2.求轨迹问题。
例3 已知一椭圆及焦点F,点A为椭圆上一动点,求线段FA中点P的轨迹方程。
例4 长为a, b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。
例5 在坐标平面内,∠AOB=,AB边在直线l: x=3上移动,求三角形AOB的外心的轨迹方程。
1.与定义有关的问题。
例1 已知定点A(2,1),F是椭圆的左焦点,点P为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。
例2 已知P,为双曲线C:右支上两点,延长线交右准线于K,PF1延长线交双曲线于Q,(F1为右焦点)。求证:∠F1K=∠KF1Q.
13.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若0<e<1,则点P的轨迹为椭圆;若e>1,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为。
12.极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=ρ,∠xOP=θ,则由(ρ,θ)唯一确定点P的位置,(ρ,θ)称为极坐标。
11.抛物线常用结论:若P(x0, y0)为抛物线上任一点,
1)焦半径|PF|=;
2)过点P的切线方程为y0y=p(x+x0);
3)过焦点倾斜角为θ的弦长为。
10.抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p>0),离心率e=1.
9.双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.
2) 过焦点的倾斜角为θ的弦长是。
8.双曲线的相关概念,中心在原点,焦点在x轴上的双曲线
(a, b>0),
a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0). 左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e>1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。
7.双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为
,
参数方程为(为参数)。
焦点在y轴上的双曲线的标准方程为
。
6.双曲线的定义,第一定义:
满足||PF1|-|PF2||=2a(2a<2c=|F1F2|, a>0)的点P的轨迹;
第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com