11.已知直线l过原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和B(0,8)关于l的对称点都在C上,求直线l和抛物线的方程。
10.设曲线C1:(a为正常数)与C2:y2=2(x+m)在x轴上方有一个公共点P。(1)求实数m的取值范围(用a表示);
(2)O为原点,若C1与x轴的负半轴交于点A,当0<a<时,试求ΔOAP面积的最大值(用a表示)。
9.已知椭圆的内接ΔABC的边AB,AC分别过左、右焦点F1,F2,椭圆的左、右顶点分别为D,E,直线DB与直线CE交于点P,当点A在椭圆上变动时,试求点P的轨迹。
8.已知点P(1,2)既在椭圆内部(含边界),又在圆x2+y2=外部(含边界),若a,b∈R+,则a+b的最小值为_________.
7.已知抛物线y2=2px及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点,设直线AM,BM与抛物线的另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为_________.
6.长为l(l<1)的线段AB的两端点在抛物线y=x2上滑动,则线段AB的中点M到x轴的最短距离等于_________.
5.ΔABC一边的两顶点坐标为B(0,)和C(0,),另两边斜率的乘积为,若点T坐标为(t,0)(t∈R+),则|AT|的最小值为_________.
4.设F1,F2分别是双曲线(a>b>0)的左、右焦点,P为双曲线上的动点,过F1作∠F1PF2平分线的垂线,垂足为M,则M的轨迹为_________.
3.给定椭圆,如果存在过左焦点F的直线交椭圆于P,Q两点,且OPOQ,则离心率e的取值范围是_________.
2.设O为抛物线的顶点,F为焦点,且PQ为过F的弦,已知|OF|=a,|PQ|=b,ΔOPQ面积为_________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com