6.设平面α,β,γ,δ与四面体ABCD的外接球面分别切于点A,B,C,D。证明:如果平面α与β的交线与直线CD共面,则γ与δ的交线与直线AB共面。
5.四面体ABCD的四条高AA1,BB1,CC1,DD1相交于H点(A1,B1,C1,D1分别为垂足)。三条高上的内点A2,B2,C2满足AA2:AA=BB2:B2B1=CC2:C2C1=2:1。证明:H,A2,B2,C2,D1在同一个球面上。
4.空间是否存在有限点集M,使得对M中的任意两点A,B,可以在M中另取两点C,D,使直线AB和CD互相平行但不重合。
3.P,A,B,C,D是空间五个不同的点,∠APB=∠BPC=∠CPD=∠DPA=θ,这里θ为已知锐角,试确定∠APC+∠BPD的最大值和最小值。
2.P,Q是正四面体A-BCD内任意两点,求证:
1.能否在棱长为1的正方体形状的盒子里放入三个彼此至多有一个公共点的棱长为1的正四面体?
13.过正四面体ABCD的高AH作一平面,与四面体的三个侧面交于三条直线,这三条直线与四面体的底面夹角为α,β,γ,求tan2α+tan2β+tan2γ之值。
12.在四面体ABCD中,∠BDC=900,D到平面ABC的垂线的垂足S是ΔABC的垂心,试证:(AB+BC+CA)2≤6(AD2+BD2+CD2),并说明等号成立时是一个什么四面体?
11.设空间被分为5个不交的非空集合,证明:一定有一个平面,它至少与其中的四个集合有公共点。
10.是三个互相垂直的单位向量,π是过点O的一个平面,分别是A,B,C在π上的射影,对任意的平面π,由构成的集合为_________。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com