12.甲、乙两人轮流向同一目标射击,第一次甲射击,以后轮流射击,甲每次击中的概率为p(0<p<1),乙每次击中的概率为q(0<q<1),求甲、乙首先击中的概率各是多少?
11.将编号为1,2,…,9这九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球,设周围上所有相邻两球的号码之差的绝对值之和为S,求S达到最小值的放法的概率(注:如果某种放法经旋转或镜面反射后可与另一放法重合,则认为是相同的放法)。
10.投掷一次骰子,出现点数1,2,…,6的概率均为,连续掷10次,出现的点数之和是30的概率为_________。
9.求值:=_________。
8.如果自然数a各位数字之和等于7,那么称a为“吉祥数”,将所有的吉祥数从小到大排成一列a1,a2,a3,…,若an=2005,则an=_________。
7.如果a,b,c,d都属于{1,2,3,4}且a≠b,b≠c,c≠d, d≠a;且a是a,b,c,d中的最小值,则不同的四位数的个数为_________。
6.某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛2场之后就退出了,这样,全部比赛只进行50场,上述三名选手之间比赛场数为_________。
5.骰子的六个面标有1,2,…,6这六个数字,相邻两个面上的数字之差的绝对值叫变差,变差的总和叫全变差V,则全变差V的最大值为_________,最小值为_________。
4.1,2,3,4,5的排列a1,a2,a3,a4,a5具有性质:对于1≤i≤4,a1,a2,…,ai不构成1,2,…,i的某个排列,这种排列的个数是_________。
3.已知A={0,1,2,3,4,5,6,7},映射f:A→A满足:(1)若i≠j,则f(i)≠f(j);(2)若i+j=7,则f(i)+f(j)=7,这样的映射的个数为_________。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com