8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥
7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。
6.设a1=a2=,且当n=3,4,5,…时,an=,
(ⅰ)求数列{an}的通项公式;(ⅱ)求证:是整数的平方。
5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?
4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1<xi (i=0,1,2,…),
(1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使≥3.999均成立;
(2)寻求这样的一个数列使不等式<4对任一n均成立。
3.设数列{an}和{bn}满足a0=1,b0=0,且
求证:an (n=0,1,2,…)是完全平方数。
2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1; ②|ai-ai+1|≤2, i=1,2,…,n-1。
试问f(2007)能否被3整除?
1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,….
11.求证:存在唯一的正整数数列a1,a2,…,使得
a1=1, a2>1, an+1(an+1-1)=
10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com