2. 碰撞的分类:按能量变化情况可分为弹性碰撞和非弹性碰撞(包括完全非弹性碰撞)。
例2. 在核反应堆里,用石墨作减速剂,使铀核裂变所产生的快中子通过与碳核不断的碰撞而被减速。假设中子与碳核发生的是弹性正碰,且碰撞前碳核是静止的。已知碳核的质量近似为中子质量的12倍,中子原来的动能为E0,试求:
(1)经过一次碰撞后中子的能量变为多少?
(2)若E0=1.76MeV,则经过多少次碰撞后,中子的能量才可减少到0.025eV。
解析:按弹性正碰的规律可求出每次碰撞后中子的速度变为多少,对应的动能也就可以求解;在根据每次碰撞前后的动能之比与需要减少到0.025eV与原动能E0的比值关系,取对数求出碰撞次数(必须进位取整)。
(1)弹性正碰遵循动量守恒和能量守恒两个规律。设中子的质量为m,碳核的质量为M,有:
由上述两式整理得:
则经过一次碰撞后中子的动能:
(2)同理可得
……
设经过n次碰撞,中子的动能才会减少至0.025eV,即,,解上式得。
评点:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞。
说明:《考试大纲》强调“应用数学处理物理问题的能力”,我们在计算中常遇到的是以下一些数学问题:
①等差数列、等比数列,这两类问题的处理方法是先用数学归纳法找出规律,再求解;
②对,当
③对的形式(即),则在时,y有极值。
④对的形式,其中均为a、b变量,但恒量(、),则可根据不等式性质求极值等。
[模型要点]
在近年高考中,考查的碰撞皆为正碰问题。碰撞是中学物理教学的重点、是历年高考命题的热点,同时它一直是学生学习和高考的难点。碰撞在《考试说明》中作II级要求掌握。
1. 碰撞的特点:(1)作用时间极短,内力远大于外力,总动量总是守恒的;(2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能;(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大;(4)碰撞过程中,两物体产生的位移可忽略。
例1. 如图1所示,光滑水平面上有大小相同的A、B两球在同一直线上运动,两球质量关系为,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为,则:( )
图1
A. 左方是A球,碰撞后A、B两球速度大小之比为2:5
B. 左方是A球,碰撞后A、B两球速度大小之比为1:10
C. 右方是A球,碰撞后A、B两球速度大小之比为2:5
D. 右方是A球,碰撞后A、B两球速度大小之比为1:10
解析:题中规定向右为正方向,而AB球的动量均为正,所以AB都向右运动,又,所以,可以判断A球在左方,CD错;碰撞后A的动量变化,根据动量守恒可知,B球的动量变化,所以碰后AB球的动量分别为解得,所以A正确。
评点:动量守恒定律的矢量性即是重点又是难点,解题时要遵循以下原则:先确定正方向,与正方向相同的矢量取正号,与正方向相反的矢量取负号,未知矢量当作正号代入式中,求出的结果若大于零,则与正方向相同,若小于零则与正方向相反,同时也要善于利用动量与动能的关系,但要注意它们的区别。
[模型概述]
不在一条直线上的相遇问题在近年高考中也较为常见,如2000年的上海高考中的“估算出飞机速度”,2004年广西高考“观察者看卫星”等,该类问题其实是两种不在一条直线上的运动或不同运动的组合体,在空间上在某一时刻到达同一位置。
[模型讲解]
例. 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h。同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为4.0km/h,在水中游的速度为2.0km/h,问此人能否追及小船?
解析:费马原理指出:光总是沿着光程为极小值的路径传播。据此就将一个运动问题通过类比法可转化为光的折射问题。
如图3所示,船沿OP方向被刮跑,设人从O点出发先沿湖岸跑,在A点入水游到OP方向的B点,如果符合光的折射定律,则所用时间最短。
图3
根据折射定律:
解得
在这最短时间内,若船还未到达B点,则人能追上小船,若船已经通过了B点,则人不能追上小船,所以船刚好能到达B点所对应的船速就是小船能被追及的最大船速。
根据正弦定理
又
由以上两式可解得:
此即小船能被人追上的最大速度,而小船实际速度只有2.5km/h,小于,所以人能追上小船。
[模型要点]
从空间的角度来讲,两物体经过一段时间到达同一位置。必然存在两种关系:一是空间关系,不在一条直线的相遇问题要做好几何图形,利用三角形知识解题。二是时间关系。这是解决该类问题的切入点。
[特别说明]
圆周运动中的相遇、追及:同一圆、同方向追击的物体转过的角度时表明两物体相遇或相距最近;反方向转动的物体转过的角度(n=0、1、2、……)时表明两物体相遇或相距最近。不同一圆、同方向追击的物体转过的角度(n=0、1、2、……)时表明两物体相距最近。
[模型演练]
1. 如图4所示,有A、B两颗行星绕同一颗恒星O做圆周运动,旋转方向相同。A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则:( )
A. 经过时间,两行星再次相距最近
B. 经过时间,两行星再次相距最近
C. 经过时间,两行星相距最远
D. 经过时间,两行星相距最远
答案:BD
2. 初速度为零的匀加速运动的物体追同向匀速运动的物体
只要时间足够长,追赶者一定能追上被追赶者发生碰撞。当二者速度相等时有最大距离。若位移相等即追上(同一地点出发)。
在相遇问题中,同向运动的两物体追到即相遇,解决方法同上;相向运动的物体,各自发生的位移绝对值之和为开始时两物体间的距离时即相遇。
[模型演练]
(2005年徐州模考)在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面作初速度为15m/s,加速度大小为0.5m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。
答案:设两车速度相等经历的时间为t,则甲车恰能追及乙车时,应有
其中,解得
若,则两车等速时也未追及,以后间距会逐渐增大,及两车不相遇。
若,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大。
若,则两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两次。(文/孙晋善)
1. 匀减速运动的物体追同向匀速运动物体
若二者速度相等时,追赶者仍没有追上被追赶者,则追赶者永远追不上被追赶者,此时二者有最小距离;若二者相遇时,追赶者的速度等于被追赶者的速度,则刚好追上,也是二者避免碰撞的临界条件;若二者相遇时,追赶者的速度仍大于被追赶者的速度,则还有一次被被追赶者追上追赶者的机会,其间速度相等时二者的距离有一个最大值。
3. 妙取参照物求解
例3:火车甲正以速度v1向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动而停下。为了使两车不相撞,加速度a应满足什么条件?
解析:设以火车乙为参照物,则甲相对乙做初速为、加速度为a的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d。
即:,
故不相撞的条件为
[模型要点]
追及、相遇问题特点:讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题。一定要抓住两个关系:即时间关系和位移关系。一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
[特别说明]
2. 巧用图象法求解
例2:如图1所示,声源S和观察者A都沿x轴正方向运动,相对于地面的速率分别为和。空气中声音传播的速率为,设,空气相对于地面没有流动。
图1
(1)若声源相继发出两个声信号。时间间隔为,请根据发出的这两个声信号从声源传播到观察者的过程。确定观察者接收到这两个声信号的时间间隔。
(2)请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式。
解析:作声源S、观察者A、声信号P(P1为首发声信号,P2为再发声信号)的位移-时间图象如图2所示图线的斜率即为它们的速度则有:
图2
两式相减可得:
解得
(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期为
由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为
评点:图象分速度图象和位移图象,位移图线的斜率为速度,速度图线的斜率为加速度,速度图线与时间轴所围的“面积”值,等于该段时间内的位移大小。
[模型概述]
追及和相遇问题是一类常见的运动学问题,从时间和空间的角度来讲,相遇是指同一时刻到达同一位置。可见,相遇的物体必然存在以下两个关系:一是相遇位置与各物体的初始位置之间存在一定的位移关系。若同地出发,相遇时位移相等为空间条件。二是相遇物体的运动时间也存在一定的关系。若物体同时出发,运动时间相等;若甲比乙早出发△t,则运动时间关系为。要使物体相遇就必须同时满足位移关系和运动时间关系。
[模型讲解]
1. 利用不等式求解
例1:甲、乙两物体相距s,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v1,加速度大小为a1。乙物体在后,初速度为v2,加速度大小为a2且知v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?
解析:若是,说明甲物体先停止运动或甲、乙同时停止运动。在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为
若是,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据,求得
在t时间内
甲的位移
乙的位移
代入表达式
求得
评点:本题是一个比较特殊的追及问题(减速追减速)。求解时要对各种可能的情况进行全面分析,先要建立清晰的物理图景。本题的特殊点在于巧妙地通过比较两物体运动时间的长短寻找两物体相距最近的临界条件。
例5. (05全国高考)如图6所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A。求男演员落地点C与O点的水平距离s。已知男演员质量m1和女演员质量m2之比,秋千的质量不计,秋千的摆长为R,C点比O点低5R。
图6
解析:设分离前男女演员在秋千最低点B的速度为,由机械能守恒定律,
设刚分离时男演员速度的大小为,方向与相同;女演员速度的大小为,方向与相反,由动量守恒,
分离后,男演员做平抛运动,设男演员从被推出到落在C点所需的时间为t,根据题给条件,由运动学规律,
根据题给条件,女演员刚好回A点,由机械能守恒定律,,已知,由以上各式可得。
[模型演练]
(2005年苏、锡、常、镇四市调研)在广场游玩时,一个小孩将一充有氢气的气球用细绳系于一个小石块上,并将小石块放置于水平地面上。已知小石块的质量为,气球(含球内氢气)的质量为,气球体积为V,空气密度为ρ(V和ρ均视作不变量),风沿水平方向吹,风速为v。已知风对气球的作用力(式中k为一已知系数,u为气球相对空气的速度)。开始时,小石块静止在地面上,如图7所示。
(1)若风速v在逐渐增大,小孩担心气球会连同小石块一起被吹离地面,试判断是否会出现这一情况,并说明理由。
图7
(2)若细绳突然断开,已知气球飞上天空后,在气球所经过的空间中的风速v保持不变量,求气球能达到的最大速度的大小。
答案:(1)将气球和小石块作为一个整体;在竖直方向上,气球(包括小石块)受到重力G、浮力F和地面支持力FN的作用,据平衡条件有:
由于式中FN是与风速v无关的恒力,而,故气球连同小石块不会一起被吹离地面。
(2)气球的运动可分解成水平方向和竖直方向的两个分运动,达到最大速度时气球在水平方向做匀速运动,有
气球在竖直方向做匀速运动,有:
气球的最大速度:
联立求解得:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com