0  326936  326944  326950  326954  326960  326962  326966  326972  326974  326980  326986  326990  326992  326996  327002  327004  327010  327014  327016  327020  327022  327026  327028  327030  327031  327032  327034  327035  327036  327038  327040  327044  327046  327050  327052  327056  327062  327064  327070  327074  327076  327080  327086  327092  327094  327100  327104  327106  327112  327116  327122  327130  447090 

1. 已知角a的终边经过P(4,-3).

(1)求2sina-cosa的值;  (2)求角a的终边与单位圆的交点P的坐标.

试题详情

8.(09年广东卷.文)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.

试题详情

7.(08年广东卷.文)某初级中学共有学生2000名,各年级男、女生人数如下表:

 
初一年级
初二年级
初三年级
女生
373
x
y
男生
377
370
z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

(1)求x的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

(3)已知y245, z245,求初三年级中女生比男生多的概率.

试题详情

6. (2008年韶关模拟)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图. 观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(3)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是80分以上(包括80分)的学生中选两人,求他们选在同一组的概率.

试题详情

5. 在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.

(1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;  (2)若甲计划在9:00-9:40之间赶到,乙计划在9:20-10:00之间赶到,求甲比乙提前到达的概率.

试题详情

4. 假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:  (☆P22 8)

x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0

若由资料可知yx呈线性相关关系,试求:

(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:)

试题详情

3. 甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm):  (☆P17 例3)

甲:25 41 40 37 22 14 19 39 21 42

乙:27 16 44 27 44 16 40 40 16 40

问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?

试题详情

2. 对某电子元件进行寿命追踪调查,情况如下.        (☆P15 例3)

寿命(h)
100-200
200-300
300-400
400-500
500-600
个  数
20
30
80
40
30

(1)列出频率分布表;(2)画出频率分布直方图;(3)估计元件寿命在100-400 h以内的在总体中占的比例;(4)估计电子元件寿命在400 h以上的在总体中占的比例.

试题详情

1. 设计一个算法求的值,并画出程序框图.  (◎P20 2)

试题详情

16. 求圆心在直线上,并且经过圆与圆的交点的圆的方程. (◎P132 4)

试题详情


同步练习册答案