1.两角和与差的三角函数公式
(1)会用向量的数量积推导出两角差的余弦公式。
(2)会用两角差的余弦公式推导出两角差的正弦、正切公式。
(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系。
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义。
(2)了解平面向量的数量积与向量投影的关系。
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
2.向量的线性运算
(1)掌握向量加法、减法的运算,理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景。
(2)理解平面向量的概念和两个向量相等的含义。
(3)理解向量的几何表示。
2.三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性。
(3)理解正弦函数、余弦函数在[0,2]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在 内的单调性。
(4)理解同角三角函数的基本关系式:
(5)了解函数的物理意义;能画出函数的图像。了解参数对函数图像变化的影响。
(6)会用三角函数解决一些简单实际问题,了解三角函数是描述周期变化现象的重要函数模型。
1.任意角、弧度
(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
3.随机数
了解随机数的意义,能运用模拟方法估计概率。
2.古典概型
(1)理解古典概型及其概率计算公式。
(2)会计算一些随机事件所含的基本事件数及事件发生的概率。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com