0  331424  331432  331438  331442  331448  331450  331454  331460  331462  331468  331474  331478  331480  331484  331490  331492  331498  331502  331504  331508  331510  331514  331516  331518  331519  331520  331522  331523  331524  331526  331528  331532  331534  331538  331540  331544  331550  331552  331558  331562  331564  331568  331574  331580  331582  331588  331592  331594  331600  331604  331610  331618  447090 

31.(奉贤)(12分)如图所示,在动摩擦因素μ=0.2的水平面AB上,水平恒力F推动质量为m=1kg的物体从A点由静止开始作匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度大小不变),最高能到达C点。用传感器测量物体的瞬时速度,并在表格中记录了部分测量数据。求:

t/s
0.0
0.2
0.4

2.2
2.4
2.6

v/m•s-1
0.0
0.4
0.8

3.0
2.0
1.0

(1)恒力F 的大小;

(2)斜面的倾角

(3)若在A处撤去推力F,给物体一个水平向左的初速度,恰能使物体运动到C点,求此初速度的大小。

(1)物体从 A 到 B 过程中:(1分)

∴ F=ma1+mmg=4N      (2分)

(2)物体从 B 到 C 过程中:(1分)

   ∴        (2分)

 (3)当物体在推力F的作用下在AB间运动时,设AB间的距离为S,通过AB时间的t,

    通过B点时的速度为vB,根据表中提供的数据,在0-2.6s时间段内:

  当物体在水平面上运动时     

  当物体在斜面上运动时     (1分)

  解得          (1分)

    又         (1分)

  给物体一个初速度时物体恰能运动到C点,由于斜面光滑,则物体通过B点的速

    度仍为,根据动能定理:   (2分)

  解得         (1分)

(闸北)31.(12分)如图所示,一根“┻”形状的轻支架上固定两个小球A、B,支架可以绕转轴O在竖直平面内无摩擦自由转动,已知mA=2kg,mB=1kg,AC=BC=OC=1m。(g取10m/s2)。

(1)在A球上施加一个力F,使装置静止,B与转轴O在同一水平线上。则F最小为多少?

(2)撤去F,当A球摆动到最低点时,B球速度多大?

解:(1)力F最小,则F应与OA连线垂直   (1分)

         (2分)

       (1分)

        (1分)

(2)   (2分)

:=:2     (1分)

    (1分)

      (1分)

   (1分)

   (1分)

(闸北)32.(14分)如图所示,倾角为37°的粗糙斜面的底端有一质量kg的凹形小滑块,小滑块与斜面间的动摩擦因数。现小滑块以某一初速度从斜面底端上滑,同时在斜面底端正上方有一小球以水平抛出,经过0.4s,小球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中。(已知,),g取10m/s2,求:

(1)小球水平抛出的速度

(2)小滑块的初速度

(3)0.4s内小滑块损失的机械能

解:(1)设小球落入凹槽时竖直速度为

   (2分)

     (2分)

(2)小球落入凹槽时的水平位移    (2分)

则滑块的位移为       (1分)

     (2分)

根据公式     (1分)

得:    (1分)

(3)   (2分)

     (1分)

全 品中考网

试题详情

33.(宝山)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,杆上P处固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套一质量m=3kg的滑块A。半径R=0.3m的光滑半圆形轨道竖直地固定在地面上,其圆心OP点的正下方,在轨道上套有一质量m=3kg的小球B。用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。杆和半圆形轨道在同一竖直面内,滑块和小球均可看作质点,且不计滑轮大小的影响。现给滑块A施加一个水平向右、大小为60N的恒力F,则:

(1)求把小球B从地面拉到半圆形轨道顶点C的过程中力F做的功。

(2)求小球B运动到C处时所受的向心力的大小。

(3)问小球B被拉到离地多高时滑块A与小球B的速度大小相等?

 

   (1)对于F的做功过程,有

,      (1分){33.1}

        (1分){33.2}

           (1分){33.3}

所以,        (1分){33.4}

(2)由于B球到达C处时,已无沿绳的分速度,所以此时滑块A的速度为零,

考察两球及绳子组成的系统的能量变化过程,由功能关系,得

,           (2分){33.5}

代入已知量,得

         (1分){33.6}

             (1分){33.7}

因为向心力公式为         (1分){33.8}

所以,代入已知量,得      (1分){33.9}

(3)当绳与轨道相切时两球速度相等,

由相似三角形知识,得

             (2分){33.10}

代入已知量,得

             (1分){33.11}

所以,          (1分){33.12}

 

(普陀) 29、(12分)如图所示,ABCDEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF是半径为r=0.4m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合。现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放,

(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?

(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求此h的值。(取g=10m/s2)

解:(1)小球从ABC轨道下滑,机械能守恒,设到达C点时的速度大小为v。则:

                     2分

小球能在竖直平面内做圆周运动,在圆周最高点必须满足:

                      2分

联立以上两式并代入数据得:        2分

(2)若hH,小球过C点后做平抛运动,设球经C点时的速度大小为vx,则击中E点时:竖直方向:          1分

水平方向:                 1分

由机械能守恒有:            2分

联立以上三式并代入数据得        2分

试题详情

31.(徐汇)(12分)在研究摩擦力特点的实验中,将木块放在水平长木板上,如图(a)所示,用力沿水平方向拉木块,拉力从零开始逐渐增大。分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力Ff 随拉力F的变化图像,如图(b)所示。已知木块质量为0.78kg,重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。

(1)求木块与长木板间的动摩擦因数;

(2)如图(c),若木块在与水平方向成37°角斜向右上方的恒定拉力F作用下,以a=2m/s2的加速度从静止开始沿水平面做匀变速直线运动,拉力大小应为多大?

(3)在(2)中力作用2s后撤去拉力F,再经过多少时间木块停下?整个运动过程中摩擦力对木块做了多少功?

(1)由(b)图可知,木块所受到的滑动摩擦力Ff=3.12N  (1分)

FfμFN   (1分)   得 μ===0.4  (1分)

(2)根据牛顿运动定律得:FcosθFfma(1分)Fsinθ+FNmg  (1分)  FfμFN   

联立各式得:F=4.5N  (2分)

(3)撤去拉力后a′=μg=4m/s2(1分),所以停下的时间t2==1s(1分)

应用动能定理得:Fs1cosθ+Wf=0(1分)

s1at12=4m(1分)   代入数据得Wf =-14.4J (1分)

(杨浦)30.(10分)如图所示是录自明代《天工开物》中的一幅图,它描述的是我同古代的一种农业机械,叫做水碾.它是利用水的动能来做功的装置.当水冲击下部水轮时,转动的轮子会带动上部的石碾来碾米.水从右边进入,左边流出.假若每秒钟冲击叶片的水流为10 kg,水速从5 m/s减小为1 m/s.则每秒钟水流对叶轮做的功为多大?

解:每秒钟水流的动能变化为:

(得6分)

水流对叶轮做功等于水流的动能变化:

(得3分)

答:每秒钟水流对叶轮做的功为120J。(得1分)

 (闵行) 32.(13分)如图所示,在竖直平面内有一个半径为R且光滑的四分之一圆弧轨道AB,轨道下端B与水平面BCD相切,BC部分光滑且长度大于R,C点右边粗糙程度均匀且足够长。现用手捏住一根长也为R、质量为m的柔软匀质细绳的上端,使绳子的下端与A点等高,然后由静止释放绳子,让绳子沿轨道下滑。重力加速度为g。求:

(1)绳子前端到达C点时的速度大小;

(2)若绳子前端在过C点后,滑行s距离后停下,而且s>R,试计算绳子与粗糙平面间的动摩擦因数。

 

(1)绳子由释放到前段达C点过程中,由机械能守恒定律得:

  (5分)

解得:(1分)

(2)绳子前端滑过C点后,其受到的摩擦力先均匀增大,其平均值为,前端滑行R后摩擦力不变,其值为 μmg     (2分)

由动能定理得:

(3分)

代入上式解得:(2分)

 

(青浦)  32、(12分)如图所示,质量m=1kg的小物体从倾角θ=37°的光滑斜面上A点静止开始下滑,经过B点后进入粗糙水平面(经过B点时速度大小不变而方向变为水平)。已知SAB=3m,SBC=7.6m ,。试求:

  (1)若在小物体上始终施加一个水平向左的恒力F,发现当F=F0时,小物体恰能从A点静止出发,沿ABC到达水平面上的C点停止。求F0的大小。

  (2)某同学根据(1)问的结果,得到如下判断:“当FF0时,小物体一定能从A点静止出发,沿ABC到达C点。”这一观点是否有疏漏,若有,请对F的范围予以补充。(sin37°=0.6,cos37°=0.8)

(1)对A到C列动能定理:

        (4分)

F0=2N                             (2分)

(本小题也可以分段列式,或用牛顿定律求解,请老师自己决定评分标准)

(2)有疏漏,F太大物体会离开斜面,而不能沿ABC运动。      (2分)

临界状态为物体沿斜面运动但与斜面没有弹力,此时

F= =13.3N    (2分)   得13.3N≥F≥2N     (2分)

 (青浦)  33、(16分)如图所示,MNPQ为水平放置的足够长的平行光滑导电导轨,间距L为0.5m,导轨左端连接一个2Ω的电阻R,将一根质量为0.2kg的金属棒cd垂直地放在导轨上,且与导轨接触良好,金属棒的电阻r大小为1Ω,导轨的电阻不计,整个装置放在磁感应强度为1T的匀强磁场中,磁场方向垂直于导轨平面向下,现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动。当棒的速度达到3m/s后保持拉力的功率恒为3W,从此时开始计时,即此时t=0,已知从此时直至金属棒达到稳定速度的过程中电流通过电阻R做的功为2.2J。试解答以下问题:

  (1)金属棒达到的稳定速度是多少?

  (2)金属棒从t=0开始直至达到稳定速度所需的时间是多少?

  (3)试估算金属棒从t=0开始直至达到稳定速度的过程中通过

电阻R的电量大约在什么数值范围内?

(1)匀速:         (1分)

            (2分)        (1分)

(2)根据动能定理:

     (2分)

   (2分)           (1分)

(3)    (2分)  

根据画出的图象得:                          (1分)

      (1分) 

     (1分)            (2分)

(浦东)  32.(14分)如图所示,绝缘轻杆长L=0.9m,两端分别固定着带等量异种电荷的小球AB,质量分别为mA=4×10-2kg,mB=8×10-2kg,A球带正电,B带负电,电荷量q=6.0×10-6C。轻杆可绕过O点的光滑水平轴转动,OB=2OA。一根竖直细线系于杆上OB中点D使杆保持水平,整个装置处在水平向右的匀强电场中,电场强度E=5×104N/C。不计一切阻力,取g=10m/s2,求:

(1)细线对杆的拉力大小;

(2)若将细线烧断,当轻杆转过90°时,AB两小球电势能总的变化量;

(3)细线烧断后,在杆转动过程中小球A的最大速度。

(1)根据有固定转动轴物体的平衡条件,有

                  (2分)

     =(2×8×10-2-4×10-2)×10=1.2(N)  (2分)

(2)杆转过90°时,电场力对两带电小球做正功,电势能减少     (1分)

     =6.0×10-6×5×104×0.9=0.27(J)(3分)

(3)当力矩的代数和为零时,B球的速度达到最大。

θ=37°             (2分)

由动能定理

       (以上二式共2分)

联立求得:vA=2m/s      (2分)

(卢湾) 31、冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图所示。比赛时,运动员在投掷线AB处让冰壶以一定的初速度滑出,使冰壶的停止位置尽量靠近距离投掷线30m远的O点。为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为μ1=0.008,用毛刷擦冰面后动摩擦因数减少至μ2=0.004。在某次比赛中,运动员使冰壶C在投掷线中点处以v0=2m/s的速度沿虚线滑出。

(1)若不用毛刷擦冰面,则冰壶停止的位置距离O点多远?

(2)为使冰壶C能够沿虚线恰好到达O点,运动员用毛刷擦冰面的长度应为多少?

        

(1)mv02=μ1mgs(2分)  s= =m = 25m(2分)

30m-25m=5m(1分)

(2)设冰壶在未被毛刷擦过的冰面上滑行的距离为s1,所受摩擦力的大小为f1:在被毛刷擦过的冰面上滑行的距离为s2,所受摩擦力的大小为f2。则有

s1+ s2=L   ①(式中L为投掷线到圆心O的距离)

f1=μ1mg ② ,f2=μ2mg③  由功能关系,得f1 s1+ f2 s2=mv02   ④(4分)

联立以上各式,解得s2=  代入数据得 s2=10m(2分)

(黄浦)32.(13分)如图23-1所示,长为4m的水平轨道AB与倾角为37°的足够长斜面BC在B处连接,有一质量为2kg的滑块,从A处由静止开始受水平向右的力F作用,F按图23-2所示规律变化,滑块与AB和BC间的动摩擦因数均为0.25,重力加速度g取10m/s2。求:

(1)滑块到达B处时的速度大小;

(2)不计滑块在B处的速率变化,滑块冲上斜面,滑块最终静止的位置与B点的距离。

(1)由图得:0~2m: N  △X1=2m;          (1分)

2~3m:,△X2=1m;                        (1分)

3~4m:N,△X3=1m                        (1分)

A至B由动能定理:   (2分)

m/s     (1分)

(2)因为,滑块将滑回水平面。          (1分)

设滑块由B点上滑的最大距离为L,

由动能定理            (2分)

解得:m                              (1分)

从最高点滑回水平面,设停止在与B点相距S处,

                (1分)

解得:                      (1分)

m                         (1分)

(虹口) 31、(12分)弹性小球从某一高度H自由下落到水平地面上,与水平地面碰撞后弹起,假设小球与地面的碰撞过程中没有能量损失,但由于受到大小不变的空气阻力的影响,使每次碰撞后弹起上升的高度是碰撞前下落高度的3/4。为使小球弹起后能上升到原来的高度H,则需在小球开始下落时,在极短时间内给它一个多大的初速度v0

某同学对此解法是:由于只能上升H,所以机械能的损失为mgH,只要

补偿损失的机械能即可回到原来的高度,因此mv02=mgH,得v0 =

你同意上述解法吗?若不同意,请简述理由并求出你认为正确的结果。

解:不同意,该学生只考虑小球回到H后要继续上升所需克服重力做功的动能,忽略了继续上升时还要有能量克服空气阻力做功。                      (4分)

                   (4分)

                   (4分)

(虹口) 33、(15分)风洞实验室可产生水平方向的、大小可调节的风力。在风洞中有一个固定的支撑架ABC,该支撑架的外表面光滑,且有一半径为R的四分之一圆柱面,支撑架固定在离地面高为2R的平台上,平台竖直侧壁光滑,如图所示,地面上的D点处有一竖直的小洞,小洞离侧壁的水平距离为R,现将质量分别为m1m2的两个小球用一根不可伸长的轻绳连接按图示的方式置于圆柱面上,球m1放在柱面底部的A点,球m2竖直下垂。

(1)在无风情况下,将两球由静止释放(不计一切摩擦),小球m1沿圆柱面向上滑行,到最高点C恰与圆柱面脱离,则两球的质量之比m1: m2是多少?(m1到最高点时m2尚未着地)

(2)改变两小球的质量比,并使它们由静止开始运动,同时开动风机,产生均匀、恒定、水平向左的风,当小球m1滑至圆柱面的最高点C时绳恰好断裂,通过调节风力F的大小,使小球m1恰能与洞壁无接触地落入小洞D的底部,求小球m1经过C点时的速度及水平风力F的大小。

 

解:(1)小球m1在C点恰好离开圆柱面,由圆周运动规律可知小球在C点时只由重力提供向心力,

      ,速度为:         1         (3分)

m1m2组成的系统机械能守恒,则将两球由静止释放到小球m1离开C点时有:

          2         (2分)

   由12式解得:                (1分)

 (2)绳子断裂后小球m1在水平方向的平均速度为:        3   (1分)

小球m1在下落过程中在竖直方向做自由落体运动,运动时间为:  4  (2分)

小球m1在水平方向做末速度为零的匀减速运动,小球m1在离开C点时的速度为:

                             5  (1分)

      由12345解得:              (2分)

   由匀变速运动规律可知,小球在水平方向的加速度大小为:    6  (2分)

   由牛顿第二定律可求得小球所受风力为:            (1分)

试题详情

2.72m;0.384J

(嘉定)32、(12分)如图所示,半径r=0.3m、质量M的光滑1/4圆弧面放在光滑的水平长桌面上,桌面离地面高h=0.8m。将一质量为m小物体从圆弧最高处静止释放,为了防止圆弧面在桌面上的滑动,在圆弧面右侧固定了档板。若两物体的质量满足M=2m。求

(1)小物体由静止释放后,小物体的水平射程x

(2)某次操作中忘记安装档板,发现小物体静止释放后,圆弧面开始向右运动,最后测得小物体的水平射程x0=0.8m,则小物体滑离后圆弧面在桌面上运动的最大速度vM

解:(1)(6分)设小物体到达圆弧底端速度v,则下滑的过程中由动能定理得

……①(或用机械能守恒定律)  (2分)

小物体做平抛运动有

……②  ……③   (2分)

由上述列式得x≈0.98m     (2分)

(2)(6分)小物体离开圆弧面后,圆弧面速度最大

设小物体离开桌面速度v1,圆弧面速度v2

小物体做平抛运动有       (2分)

小球下滑中和圆弧面整体用动能定理

   (2分)    得v2=1 m/s。   (2分)

(长宁)30.(10分)如图所示的ABC是游乐场中的滑道模型,它位于竖直平面内,BC滑道水平,A B与水平面夹角为θDE是水面,AB = BC = CD =.滑船(可视为小滑块)从A点由静止开始下滑,滑船与AB滑道间的动摩擦因数为μ,滑船落水点到竖直岸的水平距离为S,不计空气阻力,试求:

(1)滑船滑至C点时的速度;

(2)滑船滑至B 点时的速度.

(1)        得   (4分)

(2)  可以用动能定理求,也可以用运动学公式联系牛顿第二定律求得:

  (4分)    

  求得   (2分)

试题详情

0.45,2

(闸北)23.将一质量为0.2kg的小球在空中静止释放,其离地高度与时间的关系,式中以m为单位,以s为单位。则小球0.4末离地高度为     m,克服空气阻力所做的功为     J。(g取10m/s2)

试题详情

25.(徐汇)如图所示,半径R=0.6m的光滑半圆细环竖直放置并固定在水平桌面上,环上套有质量为1kg的小球甲,用一根细线将小球甲通过两个光滑定滑轮B、D与质量为2kg的小物体乙相连,滑轮的大小不计,与半圆环在同一竖直平面内,它们距离桌面的高度均为h=0.8m,滑轮B恰好在圆环最高点C点的正上方。初始时将甲拉至半圆环左边最低点A处,然后将甲、乙由静止开始释放,则当甲运动到离桌面高度为_________m时,甲、乙速度大小相等;当甲运动到C点时的速度大小为________m/s。(g=10m/s2)

试题详情

25.(长宁)某物块以80 J初动能从固定斜面底端上滑,以斜面底端为零势能参考平面,到达最高点时物块的重力势能为50 J.在返回斜面底端的过程中,当物块的重力势能为20 J时,动能为_______J;当物块下滑到动能和势能恰好相等时,其机械能为___________J .

12J   200/7 J  (28.6 J)

(嘉定)25.如图所示,在倾角为300的足够长的光滑斜面上有一质量为m=1kg的物体,它受到沿斜面方向的力F的作用。力F按右图变化(图中纵坐标是力Fmg的比值,力F沿斜面向上为正)。已知此物体在t=0时速度为零,那么此物体在4s末的速率为 ________ m/s,力F做的功是 ________ J。(g取10m/s2)

30 m/s;150J

 (卢湾)24、特种兵过山谷的一种方法可化简为如右图所示的模型:将一根长为2d、不可伸长的细绳的两端固定在相距为d的A、B两等高处,悬绳上有小滑轮P,战士们相互配合,可沿着细绳滑到对面。开始时,战士甲拉住滑轮,质量为m的战士乙吊在滑轮上,处于静止状态,AP竖直,则此时甲对滑轮的水平拉力为_________;若甲将滑轮由静止释放,则乙在滑动中速度的最大值为_________。(不计滑轮与绳的质量,不计滑轮的大小及摩擦)

     1/2mg

(宝山) 25.有一种利用蓄电池提供动力的电动自行车装有发电机,当关闭动力让车滑行时,发电机利用充电装置可向车载的蓄电池充电,则充电过程是将________能转化成化学能的过程。现有某人骑这样的电动车自行车,以600J的初动能在粗糙的水平路面上滑行,第一次关闭发电机充电装置,让车自由滑行,其动能随位移变化的关系如图线①所示;第二次启动发电机充电装置,其动能随位移变化的关系如图线②所示,设前后二次地面和空气对车产生的阻力恒定且相等,则第二次时蓄电池增加的化学能最多是_________ J。

电;240

(奉贤)24.如图所示,一轻绳通过无摩擦的小定滑轮O与小球B连接,另一端与套在光滑竖直杆上的小物块A连接,杆两端固定且足够长,物块A由静止从图示位置释放后,先沿杆向上运动。设某时刻物块A向上运动的速度大小为vA,轻绳与杆的夹角为θ,则此时小球B运动的速度大小vB为__________。在A上升过程中小球B的机械能的变化情况是_________。(填“一直减小”“一直变大”“一直不变”“先变小后变大”或“先变大后变小”)

_vA cosθ__ 先变小后变大

 (浦东) 23.如图是一种抛物器,轻质杠杆左端A是一个质量为M=10kg的重球,杠杆的右端是一个被抛的物体,质量为m=0.5kg,OAOB=1m。此时杠杆与水平地面MN的夹角为θ=30°,要使其静止,则杆右端B应施加一个竖直向下的力F________N;撤去F,杠杆逆时针转动,物体最后被竖直向上抛出,则物体上升离地面MN的最大高度约为________m。(g取10m/s2)

95,0.95

(静安)  28.如图所示,在水平面内有两条光滑平行金属轨道MN、PQ,轨道上静止放着两根质量均为m可自由运动的导体棒ab和cd。在回路的正上方有一个质量为M的条形磁铁,磁铁的重心距轨道平面高为h。由静止释放磁铁,当磁铁的重心经过轨道平面时,磁铁的速度为v,导体棒ab的动能为EK,此过程中,磁场力对磁铁所做的功        ;导体棒中产生的总热量是        

Mv2/2―Mgh, Mgh―Mv2/2―2EK

试题详情

19.(金山)一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端。已知在物体运动过程中物体所受的摩擦力恒定。若用Fv、s和E分别表示该物体所受的合力、物体的速度、位移和机械能,则下列图象中可能正确的是------------------(     )

A C D

(金山)22.质量为m的物体从静止开始以g/2的加速度竖直向下运动,当下降高度为h时,该物体机械能的增量为________,该物体动能的增量为_________。

−mgh/2、  mgh/2

(浦东)  21.在竖直平面内有一条光滑弯曲轨道,一个小环套在轨道上,从3.0m的高处无初速度释放。轨道上各个高点的高度如图所示。则第________高点是小环不可超越的;小环随后将如何运动?________________________________

(4)、在轨道间来回作往复运动

试题详情

17.(奉贤)一带电小球在从空中的a点运动到b点的过程中,重力做功3J,电场力做功1J,克服空气阻力做功0.5J,则下列判断正确的是[     ]

A.在a点的动能比b点小3.5J      B.在a点的重力势能比在b点大3J

C.在a点的电势能比在b点小1J     D.在a点的机械能比在b点小0.5J

ABD

试题详情

19、(嘉定)如图所示,电梯质量为M,它的水平地板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动。当上升高度为H时,电梯的速度达到v,则在这段过程中,下列说法中正确的是

(A)电梯地板对物体的支持力所做的功等于

(B)电梯地板对物体的支持力所做的功大于

(C)钢索的拉力所做的功等于

(D)钢索的拉力所做的功大于

BD

试题详情


同步练习册答案