0  332747  332755  332761  332765  332771  332773  332777  332783  332785  332791  332797  332801  332803  332807  332813  332815  332821  332825  332827  332831  332833  332837  332839  332841  332842  332843  332845  332846  332847  332849  332851  332855  332857  332861  332863  332867  332873  332875  332881  332885  332887  332891  332897  332903  332905  332911  332915  332917  332923  332927  332933  332941  447090 

3. 分析下列情况中系统的动量是否守恒(   )

A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统

B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)

C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统

D.斜向上抛出的手榴弹在空中炸开时

[错解分析]错解:本题的错解在于漏掉了一些选项,由于对动量守恒条件中的合外力为零认识不清,混淆了内力和外力而漏选了B。由于没有考虑到爆炸过程是一个作用时间阶段,内力远大于外力的过程,符合动量守恒的近似条件,而漏选了D。

[解题指导]动量守恒定律成立的条件:(1)系统不受外力作用时,系统动量守恒;(2)系统所受合外力之和为0,则系统动量守恒;(3)系统所受合外力虽然不为零,但系统内力远大于外力时,系统的动量看成近似守恒。

[答案]本题的正确选项为A、B、D。A、B选项符合条件(2);D选项符合条件(3)

试题详情

2. 质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子的速度将(   )

A. 减小      B. 不变     C. 增大     D. 无法确定

[错解分析]错解:因为随着砂子的不断流下,车子的总质量减小,根据动量守恒定律总动量不变,所以车速增大,故选C。

产生上述错误的原因,是在利用动量守恒定律处理问题时,研究对象的选取出了问题。因为,此时,应保持初、末状态研究对象的是同一系统,质量不变。

[解题指导]利用动量守恒定律解决问题的时候,在所研究的过程中,研究对象的系统一定不能发生变化,抓住研究对象,分析组成该系统的各个部分的动量变化情况,达到解决问题的目的。

[答案]本题的正确选项为B。

本题中砂子和车组成的系统动量守恒,由动量守恒定律,在初状态,砂子下落之前,砂子和车都以v0向前运动;在末状态,由于惯性,砂子下落的时候具有和车相同的水平速度v0,车的速度为v’,由(M+m)v0=m v0+M v’v’= v0,车速不变,故B正确。

试题详情

复习指导:①回归课本夯实基础,仔细看书把书本中的知识点掌握到位

      ②练习为主提升技能,做各种类型的习题,在做题中强化知识

      ③整理归纳举一反三,对易错知识点、易错题反复巩固

      ④应用动量守恒定律的注意点:

⑴矢量性:动量守恒定律的数学表达式是个矢量关系式.对于我们常见作用前后物体的运动方向都在同一直线上的问题,可选取一个正方向,凡与正方向相同的矢量均取正值,反之为负,这样即可将矢量运算简化为代数运算.

⑵同时性:动量守恒指系统在任一瞬间的动量恒定。等号左边是作用前系统内各物体动量在同一时刻的矢量和,等号右边是作用后系统内各物体动量在另一同时刻的矢量和.不是同一时刻的动量不能相加.

⑶相对性:表达式中各物体的速度(动量)必须是相对于同一惯性参考系而言的,一般均以地面为参考系.若题设条件中各速度不是同一参考系的速度,就必须经过适当转换,使其成为同一参考系的速度值.

⑷系统性:解题时,选择的对象是满足条件的系统,不是其中一个物体,初、末两个状态研究对象必须一致。

⑸广泛性:动量守恒定律具有广泛的适用范围,不论物体间的相互作用力性质如何;不论系统内部物体的个数;不论它们是否互相接触;不论相互作用后物体间是粘合还是分裂,只要系统所受合外力为零,动量守恒定律都适用。动量守恒定律既适用于低速运动的宏观物体,也适用于高速运动的微观粒子间的相互作用,大到天体,小到基本粒子间的相互作用都遵守动量守恒定律。 

⑤应用动量守恒定律解题的一般步骤:

⑴确定研究对象,选取研究过程;

⑵分析内力和外力的情况,判断是否符合守恒条件;

⑶选定正方向,确定初、末状态的动量,

⑷根据动量守恒定律列方程求解。

应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。

1. 在光滑水平面上停放着两木块ABA的质量大,现同时施加大小相等的恒力F使它们相向运动,然后又同时撤去外力F,结果AB迎面相碰后合在一起,问AB合在一起后的运动情况将是(   )

A.停止运动          B.因A的质量大而向右运动

C.因B的速度大而向左运动   D.运动方向不能确定

[错解分析]错解:因为A的质量大,所以它的惯性大,所以它不容停下来,因此应该选B;或者因为B的速度大,所以它肯定比A后停下来,所以应该选C。

产生上述错误的原因是没有能够全面分析题目条件,只是从一个单一的角度去思考问题,失之偏颇。

[解题指导]碰撞问题应该从动量的角度去思考,而不能仅看质量或者速度,因为在相互作用过程中,这两个因素是一起起作用的。

[答案]本题的正确选项为A。

由动量定理知,AB两物体在碰撞之前的动量等大反向,碰撞过程中动量守恒,因此碰撞之后合在一起的总动量为零,故选A。

试题详情

6. 木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩,如图1所示,当撤去外力后,下列说法中正确的是(   )

A.a尚未离开墙壁前,a和b系统的动量守恒

B.a尚未离开墙壁前,a与b系统的动量不守恒

C.a离开墙后,a、b系统动量守恒

D.a离开墙后,a、b系统动量不守恒

点拨:此题考查动量守恒定律应用的条件。正确选项为BC。

试题详情

5. A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是5kg﹒m/s,B球的动量是7kg﹒m/s,当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值是(   )

    A.6kg﹒m/s、6kg﹒m/s    B.4kg﹒m/s、8kg﹒m/s

    C.-2kg﹒m/s、14kg﹒m/s   D.-3kg﹒m/s、15kg﹒m/s

点拨:此题考查碰撞的规律。必须满足动量守恒定律、动能不增加、符合实际情景选A。

试题详情

4. 如图所示,在光滑的水平面上,依次放着质量均为m的4个小球,小球排列在一条直线上,彼此间隔一定的距离。开始时后面3个小球处于静止状态,第一个小球以速度v向第二个小球碰去,结果它们先后都粘合到一起向前运动。由于连续碰撞,系统剩余的机械能是 __________。

点拨:此题考查多物体多过程动量守恒和能量守恒定律。答案:

试题详情

3. 下列关于动量守恒的论述正确的是

A.某物体沿着斜面下滑,物体的动量守恒

B.系统在某方向上所受的合外力为零,则系统在该方向上动量守恒

C.如果系统内部有相互作用的摩擦力,系统的机械能必然减少,系统的动量也不再守恒

D.系统虽然受到几个较大的外力,但合外力为零,系统的动量仍然守恒

点拨:此题考查动量守恒的条件。选BD。

试题详情

2. 一辆小车在光滑的水平上匀速行使,在下列各种情况中,小车速度仍保持不变的是(   )

A.从车的上空竖直掉落车内一个小钢球

B.从车厢底部的缝隙里不断地漏出砂子

C.从车上同时向前和向后以相同的对地速率扔出质量相等的两物体

D. 从车上同时向前和向后以相同的对车速率扔出质量相等的两物体

 点拨:此题考查动量守恒定律。选BD。

试题详情

针对典型精析的例题题型,训练以下习题。

1. A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是 (   )

A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量

B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量

C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量

D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量

点拨: 此题考查动量守恒定律的公式。选AD

试题详情

题型1.(子弹射木块题型)矩形滑块由不同材料的上下两层固体组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块。若射中上层子弹刚好不穿出,若射中下层子弹刚好能嵌入,那么(   )

   A.两次子弹对滑块做的功一样多   B.两次滑块所受冲量一样大

C.子弹嵌入上层时对滑块做功多   D.子弹嵌入上层时滑块所受冲量大

解:设固体质量为M,根据动量守恒定律有:

 

由于两次射入的相互作用对象没有变化,子弹均是留在固体中,因此,固体的末速度是一样的,而子弹对滑块做的功等于滑块的动能变化,对滑块的冲量等于滑块的动量的变化,因此A、B选项是正确的。

规律总结:解决这样的问题,还是应该从动量的变化角度去思考,其实,不管是从哪个地方射入,相互作用的系统没有变化,因此,动量和机械能的变化也就没有变化。

题型2.(动量守恒定律的判断)把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是(   )

A.枪和子弹组成的系统动量守恒

B.枪和车组成的系统动量守恒

C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒

D.枪、子弹、车组成的系统动量守恒

解:本题C选项中所提到的子弹和枪筒之间的摩擦是系统的内力,在考虑枪、子弹、车组成的系统时,这个因素是不用考虑的。根据受力分析,可知该系统所受合外力为0,符合动量守恒的条件,故选D

规律总结:判断系统是否动量守恒时,一定要抓住守恒条件,即系统不受外力或者所受合外力为0。

题型3.(碰撞中过程的分析)如图所示,位于光滑水平桌面上的小滑块A和B都可视作质点,质量相等。B与轻质弹簧相连。设B静止,A以某一初速度向B运动并与弹簧发生碰撞。在整个碰撞过程中,弹簧具有的最大弹性势能等于(   )

A. A的初动能

B. A的初动能的1/2

C. A的初动能的1/3

D. A的初动能的1/4

解: 解决这样的问题,最好的方法就是能够将两个物体作用的过程细化。具体分析如右图,开始A物体向B运动,如右上图;接着,A与弹簧接触,稍有作用,弹簧即有形变,分别对A、B物体产生如右中图的作用力,对A的作用力的效果就是产生一个使A减速的加速度,对B的作用力的效果则是产生一个使B加速的加速度。如此,A在减速,B在加速,一起向右运动,但是在开始的时候,A的速度依然比B的大,所以相同时间内,A走的位移依然比B大,故两者之间的距离依然在减小,弹簧不断压缩,弹簧产生的作用力越来越大,对A的加速作用和对B的加速作用而逐渐变大,于是,A的速度不断减小,B的速度不断增大,直到某个瞬间两个物体的速度一样,如右下图。过了这个瞬间,由于弹簧的压缩状态没有发生任何变化,所以对两个物体的作用力以及力的效果也没有变,所以A要继续减速,B要继续加速,这就会使得B的速度变的比A大,于是A、B物体之间的距离开始变大。因此,两个物体之间的距离最小的时候,也就是弹簧压缩量最大的时候,也就是弹性势能最大的时候,也就是系统机械能损失最大的时候,就是两个物体速度相同的时候。

根据动量守恒有,根据能量守恒有,以上两式联列求解的,可见弹簧具有的最大弹性势能等于滑块A原来动能的一半,B正确

规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。

题型4.(动量守恒定律的适用情景)小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?

解:发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0.

发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(M-m)v2'.

据动量守恒定律有

0=mv1'cos45°+(M-m)v2'.

取炮弹的水平速度方向为正方向,代入已知数据解得

 

规律总结:取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力.系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒.

题型5. (多物体多过程动量守恒)两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg.它们的下底面光滑,上表面粗糙.另有质量C=0.10kg的铅块C(其长度可略去不计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B上,测得B、C的共同速度为v=0.50m/s,求:木块A的速度和铅块C离开A时的速度.

解:设C离开A时的速度为vC,此时A、B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知

mCvC=(mA+mB)vA+mCv'C   (1)

以后,物体C离开A,与B发生相互作用.从此时起,物体A不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v'C和vA变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C、B相对静止时的这两个瞬间,由动量守恒定律知

mCv'C+mBvA=(mB+mC)v   (2)

由(l)式得        mCv'C=mCvC-(mA+mB)vA

代入(2)式        mCv'C-(mA+mC)vA+mBvA=(mB+mC)v.

得木块A的速度

所以铅块C离开A时的速度

题型6.(人船模型)在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)

解:选地球为参考系,人在船上行走,相对于地球的平均速度为(L-x)/t,船相对于地球后退的平均速度为x/t,系统水平方向动量守恒方程为

   故   

规律总结:错解:由船和人组成的系统,当忽略水的阻力时,水平方向动量守恒.取人前进的方向为正方向,设t时间内人由船头走到船尾,则人前进的平均速度为L/t,船在此时间内后退了x距离,则船后退的平均速度为x/t,水平方向动量守恒方程为

   故  

这一结果是错误的,其原因是在列动量守恒方程时,船后退的速度x/t是相对于地球的,而人前进的速度L/t是相对于船的。相对于不同参考系的速度代入同一公式中必然要出错.

题型7. (动量守恒中速度的相对性)一个静止的质量为M的原子核,放射出一个质量为m 的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于(   )

解:取整个原子核为研究对象。由于放射过程极为短暂,放射过程中其他外力的冲量均可不计,系统的动量守恒.放射前的瞬间,系统的动量p1=0,放射出粒子的这一瞬间,设剩余部分对地的反冲速度为v',并规定粒子运动方向为正方向,则粒子的对地速度v=v0-v',系统的动量

p2=mv-(M-m)v'=m(v0-v')-(M-m)v'.

由p1=p2,即

0=m(v0-v)-(M-m)v'=mv0-Mv'.

故选C。

规律总结:运用动量守恒定律处理问题,既要注意参考系的统一,又要注意到方向性

试题详情


同步练习册答案