22.(本小题满分14分)
设PQ是双曲线的余弦,且PQ与轴垂直,、是双曲线的左、右顶点。
(1) 求直线和的焦点的轨迹C的方程;
(2) 设直线过点,且与轨迹C相交于M、N两点,R为轨迹C上的一点,O为坐标原点,且。问是否为定值?若是,求出该定值;若不是,请说明理由。
高1考1资1源2网
高1考1资1源2网
高1考1资1源2网
高1考1资1源2网
高1考1资1源2网
高1考1资1源2网
21.(本小题满分12分)
已知各项均为正数的数列满足,其中。
(1) 求和的值;
(2) 求证:
(3) 求证:高1考1资1源2网
20.(本小题满分12分)
已知函数
(1) 若是的极值点且的图像过原点,求的极值;
(2) 若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网
19.(本小题满分12分)
如图,正四棱锥各棱长都为2,点
O、M、N、Q分别是AC、PA、PC、PB的中点。
(1)求证:平面;
(2)求平面MND与平面ACD所成的锐角二面角的余弦值
的大小;
(3) 求三棱锥的体积。高1考1资1源2网
18.(本小题满分12分)
为适应新课程改革的需要,调动学生学习的兴趣,拓宽学生学习的视野,某中学对高二年级理科、文科分别开设了三门选修课,学生是否选修哪门课互不影响。经对高二理科、文科各随机抽取50人进行问卷调查,获得数据如下:高1考1资1源2网
若总体按此规律分布。
(1) 求理科所选门数不少于文科所选门数的概率;
(2) 求事件“”的概率。
17.(本小题满分12分)
已知向量,,设函数,高1考1资1源2网
(1) 求的最小正周期与单调增区间;
(2) 在中,角A、B、C所对的边分别为、、,若,的面积为,求的值。高1考1资1源2网
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com