14. 地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费(随机变量)的分布列;
(2)试比较哪一种方案好.
13. 某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.
12.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料,若由资料知y对x呈线性相关关系。试求:
(1)线性回归方程=bx+a的回归系数a,b;
(2)估计使用年限为10年时,维修费用是多少?
11. 一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:
(1)从中任意摸出2个球,得到的数是黑球的概率;
(2)袋中白球的个数。
10. 甲、乙、丙、丁四位同学各自对、两变量的线性相关性作试验,并用回归分析方法分别求得相关系数与残差平方和如下表:
|
甲 |
乙 |
丙 |
丁 |
|
0.82 |
0.78 |
0.69 |
0.85 |
|
115 |
106 |
124 |
103 |
则______同学的试验结果体现、两变量更强的线性相关性.
9. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是
8. 在某项测量中,测量结果服从正态分布N(1,)(>0).若在(0,1)内取值的概率为0.4,则在(2,+∞)上取值的概率为 .
7. 根据下表计算
|
不看电视 |
看电视 |
男 |
37 |
85 |
女 |
35 |
143 |
则
6. 从1,2,3,4,5,6这6个数字中, 任取2个数字相加, 其和为偶数的概率是 ______ .
5. 下图a是某县参加2009年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、…、Am [如A2表示身高(单位:cm)在[150,155]内的学生人数]。图b是统计图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160-180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是
A.<9 B.<8 C.<7 D.<6
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com