20. (本小题满分12分)
已知椭圆的中心在坐标原点,一条准线的方程为,过椭圆的左焦点,且方向向量为的直线交椭圆于两点,的中点为
(1)求直线的斜率(用、表示);
(2)设直线与的夹角为,当时,求椭圆的方程.
19. (本小题满分12分)
如图所示,直三棱柱中,
,点在上且=
(1)求证:;
(2)求二面角的大小.
18.(本小题满分12分)
(理)2008年在中国北京成功举行了第29界奥运赛,其中乒乓球比赛实行五局三胜的规则,即先胜三局的获胜,比赛到此宣布结束。在赛前,有两个国家进行了友谊赛,比赛双方并没有全部投入主力,两队双方较强的队伍每局取胜的概率为0.6,若前四局出现2比2平局,较强队就更换主力,则其在决赛局中获胜的概率为0.7,设比赛结束时的局数为
(1) 求的概率分布;
(2) 求E.
(文)在“灿烂阳光小歌手PK赛”10进6的比赛中,有男歌手和女歌手各3人进入前6名,现从中任选2名歌手去参加2010年的元旦联欢会的演出,求:
(1) 恰有一名参赛歌手是男歌手的概率;
(2) 至少有一名参赛歌手是男歌手的概率;
(3) 至多有一名参赛歌手是男歌手的概率.
17.(本小题满分10分)
向量,设函数 为常数)
(1) 若为任意实数,求的最小正周期;
(2) 若在上的最大值与最小值之和为,求的值.
16.具有性质=的函数,我们称其为满足“倒负”变换的函数,下列函数:
(1)=-;(2)=+;(3)=,其中不满足“倒负”变换的函数是 .
15.设,若非是非的充分不必要条件,那么是条件,的取值范围是
14.(理)在一次模拟考试中,由于试卷保存不利造成纸张破损,具体如下:在中,已知(纸张破损处),求角 。并推断破损处的条件为三角形一边的长度,根据答案,你能帮老师将条件补充完整吗?
(文)关于的方程有一根为,则是三角形.
13.(理)函数 在点处连续,则的值是 .
(文)某连队身高符合建国60周年国庆阅兵标准的士兵共有45人,其中18岁-21岁的士兵有15人,22岁-25岁的士兵有20人,26岁-29岁的士兵有10人,若该连队有9个参加国庆阅兵的名额,如果按年龄分层选派士兵,那么,该连队年龄在26岁-29岁的士兵参加国庆阅兵的人数为 .
12.(理)将一颗骰子投掷两次,第一次出现的点数记为,第二次出现的点数记为,
设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,试问点(P1,P2)与直线l2:x+2y=2的位置关系是
A.P在直线l2的右下方 B.P在l2直线的左下方
C.P在直线l2的右上方 D.P在直线l2上
(文)连掷两颗骰子得到的点数分别记为和,向量与向量的夹角为,则的概率是
A. B. C. D.
第Ⅱ卷(非选择题 共90分)
11.半径为的球面上有三个点,若,经过这3个点作截面,那么球心到截面的距离为
A.4 B. C.5 D.9
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com