1. 如果正比例函数及反比例函数图象都经过点(-2,4),则正比例函数的解析式为 ,反比例函数的解析式为 .
4.探究性问题的解题思路没有固定的模式和套路,解答相关问题时,可从以下几个角度考虑:(1)特殊点法;(2)分类讨论法;(3)类比猜测法等,最重要的还是要结合具体题目的特点进行分析,灵活选择和运用适当的数学思想及解题技巧。
●拓展演练
3.利用转化思想,通过求点的坐标,来达到求线段长度;通过求线段的长度求点的坐标;通过一元二次方程根的判别式及根与系数的关系来解决抛物线与x轴交点问题。
2.应用函数性质解决相关问题时,要树立数形结合思想,借助函数的图象和性质,形象、直观地解决有关不等式、最值、方程的解、以及图形的位置关系等问题。
1.正确理解和掌握各种函数的概念、图象和性质,这是解决所有函数问题的基本前提。
【答案】(1)B;(2)y=x2+x;(3)存在点C坐标为(),此时四边形ABCO的面积最大为。
【方法点拨】(1)解题方法较为灵活,容易解决。(2)因为已具备图象上三点坐标,可直接设为一般式,代入三点求解;也可以设为两根式,再代入点B坐标求解。(3)关键要抓住四边形ABCO的面积由两部分组成,其中△OAB面积为定值,因此要四边形面积最大,问题转化为判断△OBC面积是否存在最大值。
●难点突破方法总结
函数在中考中占有很重要的地位,是中考必考内容之一。课改实验区的函数综合题其背景材料更加丰富,更加贴近生活,更加注重对解决问题的思维过程的考查,但其计算量和书写量与非课改区相比,又有较大幅度的下降。在完成函数问题方面,要注重以下几点。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com