,.………………………………………………………………2分
已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、
C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n>0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
解:(Ⅰ)设F、B、C的坐标分别为(-c,0),(0,b),(1,0),则FC、BC的中垂线分别为
18.(本小题满分15分)
所以甲胜的概率P(B)=,从而乙胜的概率P(C)=1-=.…………14分
由于P(B)≠P(C),所以这种游戏规则不公平. ………………………………15分
评讲建议:
本题主要考查古典概率的计算及其相关知识,要求学生列举全面,书写规范.尤其注意此类问题的答题格式:设事件、说明概型、计算各基本事件种数、求值、作答.
引申:连续玩此游戏三次,若以D表示甲至少赢一次的事件,E表示乙至少赢两次的事件,试问D与E是否为互斥事件?为什么?(D与E不是互斥事件.因为事件D与E可以同时发生,如甲赢一次,乙赢两次的事件即符合题意;亦可分别求P(D)、P(E),由P(D)+ P(E)>1可得两者一互斥.)
答:编号的和为6的概率为.…………………………………………………………………7分
(Ⅱ)这种游戏规则不公平.……………………………………………………………………9分
设“甲胜”为事件B,“乙胜”为事件C, ……………………………………………10分
则甲胜即两数字之和为偶数所包含的基本事件数为13个:
(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),
(4,2) ,(4,4),(5,1) ,(5,3),(5,5).
所以. ………………………………………………………………………6分
17.(本小题满分15分)
口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:
甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,
否则算乙赢.
(Ⅰ)求甲赢且编号的和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由.
解:(I)设“甲胜且两数字之和为
(1,5),(2,4),(3,3),(4,2),(5,1),共5个.……………………2分
又甲、乙二人取出的数字共有5×5=25(个)等可能的结果, ……………………4分
又CB1面ACB1,DP 面ACB1,DP‖面ACB1.………………………………13分
同理,DP‖面BCB1.……………………………………………………………………14分
评讲建议:
本题主要考查线面平行、垂直的的判定和证明等相关知识,第一小题要引导学生挖掘直角梯形ABCD中BC⊥AC,第二小题,要求学生熟练掌握一个常用结论:若一直线与两相交平面相交,则这条直线一定与这两平面的交线平行;同时注意问题的逻辑要求和答题的规范性,这里只需要指出结论并验证其充分性即可,当然亦可以先探求结论,再证明之,这事实上证明了结论是充分且必要的.
变题:
求证:(1)A1B⊥B1D;(2)试在棱AB上确定一点E,使A1E∥平面ACD1,并说明理由.
又∵DC‖AB,DC=AB,DC ∥PB1,且DC= PB1,
∴DC PB1为平行四边形,从而CB1∥DP.……………………………………………11分
证明:由P为A1B1的中点,有PB1‖AB,且PB1=AB.……………………………………9分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com