0  346262  346270  346276  346280  346286  346288  346292  346298  346300  346306  346312  346316  346318  346322  346328  346330  346336  346340  346342  346346  346348  346352  346354  346356  346357  346358  346360  346361  346362  346364  346366  346370  346372  346376  346378  346382  346388  346390  346396  346400  346402  346406  346412  346418  346420  346426  346430  346432  346438  346442  346448  346456  447090 

26.-Flight MU257 _______________ . I must be off now. 

-Have a nice trip. 

A. is being announced            B. has announced 

C. was announcing              D. had been announced

试题详情

25. When _______________ comes to saving energy, big changes start with small steps, like turning off the lights. 

A. that        B. this         C. it         D. one

试题详情

24. Of the two cameras, I would prefer _______________ one, which is very easy for me to carry. K.s+5-u

A. a smaller      B. the smallest     C. a small      D. the smaller

试题详情

23. Mr Jones, a professor, ___________ for his excellent lectures, is popular with his students. 

A. known       B. knowing      C. to be known    D. having known

试题详情

22.-Can you give some advice on what I said just now?  

-Sorry. My mind______________. 

A. is wandering               B. was wandering 

C. has wandered              D. had wandered

试题详情

第一节:语法和词汇知识(共15小题;每小题1分,满分15分)

  从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。 

例:It is generally considered unwise to give a child ___________ he or she wants. 

A. however      B. whatever      C. whichever      D. whenever 

答案是B。 

21. Having __________ no-meat day would be a good way of encouraging ___________ low carbon life-style. 

A. a; the       B. a; a        C. the; the       D. the; a

试题详情

20.(本小题满分13分) 设函数

(1)当时,求的极值;

(2)当时,求的单调区间;

(3)若对任意,恒有成立,

的取值范围.

解:(1)依题意,知的定义域为.

时,.

,解得.         

时,;当时, .

,所以的极小值为,无极大值 .

(2)

时,

,得,令,得

时,得

,得,令,得

时,.  

综上所述,当时,的递减区间为;递增区间为.

时,单调递减.

时,的递减区间为;递增区间为.

(3)由(2)可知,当时,单调递减.

时,取最大值;当时,取最小值.

所以

.

因为恒成立,

所以,整理得.

所以

又因为 ,得

所以,所以 .

试题详情

19.(本小题满分13分)在数列中,

(1)证明数列是等比数列;

(2)求数列的前项和

(3)证明不等式,对任意皆成立.

[解析](1)证明:由题设,得

,所以数列是首项为,且公比为的等比数列.

(2)解:由(1)可知,于是数列的通项公式为

所以数列的前项和

(3)证明:对任意的

所以不等式,对任意皆成立.

试题详情


同步练习册答案