3.设,用二分法求方程在内近似解的过程中得,,则方程的根落在区间
A. B. C. D.不能确定
2.程序框图如图:如果上述运行的结果,那么判断框中应填入
A. B. C. D.
1.集合,,则=
A. B.
C. D.
(17)解:由题意,得=-=-=--=-=-.
⑴∵,,=-,∴=,
∴=--=-.
⑵由图象变换得,平移后的函数为=+n-,而平移后的图象关于原点对称,所以有:
当注意到0<m<时,得
即= (,).
(18)(理科做)解: (Ⅰ)“一次取出的个小球上的数字互不相同”的事件记为,
则.
(Ⅱ)由题意得,有可能的取值为:,,,.
,
|
所以随机变量的概率分布为
因此的数学期望为:
.
(文科做)记“甲从第一个口袋中的10个球中任意取出1个球是白球”记为事件A,“乙从第二个口袋中的10个球中任意取出1个球是白球”为事件B,……1分
于是,……5分
由于甲或乙是否取得白球对对方是否取到白球没有影响,
因此,A与B是相互独立事件,……7分
(1)两人都取到白球的概率为=;……9分
(2)甲、乙两人均未取到白球的概率为,……10分
则两人中至少有一人取到白球的概率为.……12分
(19)解析:(理)(法一)(1)取的中点,连结、,
,且,,……2分
又是的中点,且,,
∴四边形是平行四边形,∴,
又平面平面,平面;……4分
(2)连结,平面,
是直线与平面所成的角,……6分
在中,,
即直线与平面所成的角大小为;……8分
(3)作,交的延长线于,连结,
由三垂线定理,得,
是二面角的平面角,……10分
由,可得,,
∴二面角的大小为.……12分
(法二)以为原点,如图建立直角坐标系,则,
(1)取的中点,连结,
则,,……2分
又平面平面,平面;……4分
(2)由题意可得,平面的法向量,
,……6分
即直线与平面所成角的大小为;…………8分
(3)设平面的法向量为,,
则,可得
令,则m=(-1,1,-1),……10分
由(2)可得平面的法向量是,
,
∴二面角的大小为.……12分
(文)(1)连接BD1,已知E、F分别为DD1、DB的中点,EF是三角形BD1D的中位线,∴EF//BD1,……2分
又EF面BD1C1,BD1面BD1C1,∴EF//面BD1C1;……4分
(2)连接BD1、BC1,
正方体中,D1C1^面BCC1B1,BC1Ì面BCC1B1,
所以D1C1^B1C,
在正方形BCCB中,两对角线互相垂直,即BC1^B1C,……6分
D1C1、BC1Ì面BC1D1,所以B1C^面BC1D1,
BD1Ì面BC1D1,所以有B1C^BD1,
在(1)已证EF//BD1,所以EF^B1C;……8分
(3)由三垂线定理知,又∵,∴面,由三垂线定理知,为直角三角形,
计算得:EB1=3,EF=,FB1=,FC=,B1C=2,…10分
∴V=B1F·FC·EF=×××=1.……12分
(20)(Ⅰ)依题意得 a=2c,=4,解得a=2,c=1,从而b=.故椭圆的方程为 .
(Ⅱ)由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).
∵M点在椭圆上,∴y0=(4-x02). ①
又点M异于顶点A、B,∴-2<x0<2,由P、A、M三点共线可以得P(4,).
从而=(x0-2,y0),=(2,).
∴·=2x0-4+=(x02-4+3y02). ②
将①代入②,化简得·=(2-x0).
∵2-x0>0,∴·>0,则∠MBP为锐角,从而∠MBN为钝角,
故点B在以MN为直径的圆内.
(21)解:⑴∵=-2,∴当n≥2时,=-=-,
即n≥2时,=2,数列为等比数列.
∵,∴=-2,即= 2,∴=.
∵点P(,)在直线x-y+2 = 0上,
∴-+2 = 0,即-= 2,所以数列为等差数列,
又= 1,可得= 2n-1.
⑵由已知=-2 =-2,=.
即证明不等式>+3n+4,(n≥2,nN*)
下面用数学归纳法证明如下:
①当n = 2时,= 16,+3n+4 = 14,不等式成立;
②假设当n = k (k≥2)时,原不等式成立,即>+3k+4成立,
那么当n = k+1时,=>2(+3k+4) =+6k+8,
∵k≥2,+k>0,即+6k+8 = (+k)+(+5k+8)>+5k+8 =+3(k+1)+4,
∴当n = k+1时,>+3(k+1)+4成立,
综合①②可得原不等式成立.
(22)解:⑴函数 的定义域为(-1 ,+∞).
∵= 2[(x+1)-] =,由>0得x>0,由<0得-1<x<0,
∴函数的递增区间是(0 ,+∞),递减区间是(-1 ,0).
⑵由== 0得x = 0,由⑴知,上单调递减,在[0,上单调递增.
又=+2,=,且>+2,所以当,时,函数的最大值为,故当m>时,不等式<m成立;
⑶由方程=+x+ax-a+1-= 0,
记= x-a+1-,则=1-=,
由>0,得x>1,由<0,得-1<x<1,所以在[0,1]上递减,在[1,2]上递增.
为使程=+x+a在区间[0,2]上恰好有两个相异的实根,只须= 0在[0,1]和(1,2上各有一个实根,于是有
2-<a≤3-.
(13)解析:由可得:,由是锐角三角形,可知.由韦达定理:,
因此,故.
(14)解:分三类,第一类,分给3个人,每人至少一个球;将20个球排成一排,一共有19个空隙,将两个隔板插入这些空隙中,规定由隔板分成的左、中、右三部分球分别分给3个人,则每一种隔法对应了一种分法,每一种分法对应了一种隔法,于是,此类的不同分法的总数为种方法;第二类,分给3个人中的两人;将20个球排成一排,一共有19个空隙,将1个隔板插入这些空隙中,这样就将20个球分成了两份,再将两份分给三人中的两个人,于是,种方法;第三类,分给一个人,共3种方法;于是,共有不同的分法为种;
(15) 提示:由题意知此平面区域表示的是以
构成的三角形及其内部,且△是直角三角形,如图, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是, 所以圆的方程是.
(16)解:由题意知,长方体的对角线即为其外接球的直径,故2R =R =,因此所求表面积为:=.
(1) (理)A;提示:根据题意可得,解得,即=;
(文科做)A;提示:直接利用两角和的正弦公式;
(2)B
(3)C 解:关于y轴的对称图形,可得的图象,再向右平移一个单位,即可得的图象,即的图
|
(4)C 解:,可以求出.选C.
(5)D;提示:共有身高符合国庆阅兵标准的士兵45人,抽取容量为9的样本,抽样比为,故抽取年龄在26岁-29岁的士兵人数为,故选D.
(6)C解:设,则,,,
显然,当时,取得最小值;此时,,,那么
(7)B;提示:由,可得,又,∴,则,∴;
(8)B解:由于点B到焦点的距离等于点B到准线的距离,又由,可得直线的倾斜角为;由,可得点A的纵坐标为,而点A的横坐标为
于是,,从而得,;
(9)C解:设直径被分成的两部分分别为r、3r,由题意,()= r·3r,解得r = 1,则球的半径R = 2,故·R=,故选C.
(10)B解:由题意知,P在右支上,所以||-|| = 2a,即|| =||+2a,
== 4a+||+≥4a+,当且仅当|| =,即|| = 2a时,等号成立,
又||≥c-a,2a≥c-a,解得≤3,故选B.
(11)B .
,所以.
(12)D解:圆方程化为(x+)+(y+)= 4++,圆心为(-,-),因为M、N关于直线x+y-1 = 0对称,所以直线x+y-1 = 0过圆心(-,-),则---1= 0,即k+m+2 = 0,又由题意知直线y = kx+1与直线x+y-1 = 0垂直,所以k = 1,把k = 1代入k+m+2 = 0得m =-3,所以不等式组为: 如图,阴影部分的面积为×1×=,故选D.
(17)(本题满分10分)已知向量= (,),= (,-),,,函数=·.⑴若=-,求函数的值;
⑵将函数的图象按向量= (m,n) (0<m<平移,使得平移后的图象关于原点对称,求向量.
(18)(理科做)(本题满分12分)袋中装着标有数字,,,,的小球各个,从袋中任取个小球,每个小球被取出的可能性都相等,用表示取出的个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量的概率分布和数学期望.
(文科做)有两个口袋,其中第一个口袋有6个白球,4个红球,第二个口袋中有4个白球,6个红球,甲从第一个口袋中的10个球中任意取出1个球 ,乙从第二个口袋中 的10个球任意取出一个球.
(1)求两人都取到白球的概率;
(2)求两人中至少有一个取到白球的概率.
(19)(本题满分12分)(理科做)已知在四棱锥中,底面是矩形,平面,、分别是、的中点,
(1)求证:平面;
(2)求与平面所成角的大小;
(3)求二面角的大小.
(文科做)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF//平面BC1D1;
(2)求证:EF⊥B1C;
(3)求三棱锥B1-EFC的体积.
(20)(本题满分12分)设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为右准线上不同于点(4,0)的任意一点, 若直线分别与椭圆相交于异于的点,证明:点在以为直径的圆内.
(21)(本题满分12分)已知数列的前n项和为,且=-2 (n = 1、2、3、…),数列中,= 1,点P(,)在直线x-y+2 = 0上.
⑴求数列和数列的通项公式;
⑵若为数列的前n项和,求证:当n≥2,nN*时,>+3n.
(22)(本题满分12分)设函数=-.
⑴求的单调区间;
⑵若当,时(其中=2.718…)不等式<m恒成立,求实数m的取值范围;
⑶若关于x的方程=+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
鄢陵县第一高中2010届第3次模拟考试试卷
(13)锐角三角形中,边长是方程的两个根,且,则边的长是 .
(14)20个相同的球分给3个人,允许有人可以不取,但必须分完,则不同的分法总数为 ;(用数字作答)
(15)已知平面区域恰好被面积最小的圆及其内部所覆盖,则圆的方程为 .
(16)长方体的对角线长度是,若长方体的8个顶点在同一球面上,则这个球的表面积是_____________.
(1)(理科做)若(),则等于( )
A. B. C. D.
(文科做)sin(α-β)cos(β-γ)+cos(α-β)sin(β-γ)=( )
(2)若为等差数列,且有,它的前项和有最大值,那么当取得最小正值时,( )
A.1 B.19 C.17 D.18
(3)函数的图象是( )
(4)已知集合,则等于( )
A. B.
C. D.
(5)某连队身高符合建国60周年国庆阅兵标准的士兵共有45人,其中18岁-21岁的士兵有15人,22岁-25岁的士兵有20人,26岁-29岁的士兵有10人,若该连队有9个参加国庆阅兵的名额,如果按年龄分层选派士兵,那么,该连队年龄在26岁-29岁的士兵参加国庆阅兵的人数为 ( )
A.5 B.4 C.3 D.2
(6)已知为坐标原点,分别表示与轴方向一致的单位向量,若
,,在轴上有一点,若最小,则( )
A. B. C. D.
(7)已知是三角形的一内角,且则等于( )
A. B. C. D.
(8)如图,过抛物线的焦点的直线交抛
物线于点A、B,交其准线于点C,若,且,
则此抛物线的方程为 ( )
A. B
C. D.
(9)球的截面把垂直于截面的直径分为1∶3两部分,若截面圆半径为,则球的体积为( ).
A. B. C. D.
(10)已知双曲线(a>0,b>0)的左、右焦点分别为、,P为双曲线右支上任意一点,当取得最小值时,该双曲线离心率的最大值为( ) .
A. B.3 C. D.2
(11)设为坐标平面上一点,记,且的图像与射线交点的横坐标由小到大依次组成数列,则=( )
A. B. C. D.
(12)如果直线y = kx+1与圆x+y+kx+my-4 = 0交于M、N两点,且M、N关于直线x+y-1 = 0对称,则不等式组:表示平面区域的面积是( ).
A.1 B. C. D.
第二卷(非选择题部分,共90分)
21.A [解析]本题考查楞次定律及感应电流大小判断问题,难度中等。
线框刚进入磁场时磁通量向外增加,感应磁场向里,因此感应电流方向为顺时针,选项BD错误;随着线框的运动,导线切割磁感线长度增加,感应电流增加,A正确,C错误。本题正确选项为A。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com