0  347350  347358  347364  347368  347374  347376  347380  347386  347388  347394  347400  347404  347406  347410  347416  347418  347424  347428  347430  347434  347436  347440  347442  347444  347445  347446  347448  347449  347450  347452  347454  347458  347460  347464  347466  347470  347476  347478  347484  347488  347490  347494  347500  347506  347508  347514  347518  347520  347526  347530  347536  347544  447090 

5.(原创题)已知定义在R上的函数f(x)是偶函数,对x∈R,f(2+x)=f(2-x),当f(-3)=-2时,f(2011)的值为________.

解析:因为定义在R上的函数f(x)是偶函数,所以f(2+x)=f(2-x)=f(x-2),故函数f(x)是以4为周期的函数,所以f(2011)=f(3+502×4)=f(3)=f(-3)=-2.答案:-2

试题详情

4.(2009年高考辽宁卷改编)已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1)<f()的x取值范围是________.

解析:由于f(x)是偶函数,故f(x)=f(|x|),由f(|2x-1|)<f(),再根据f(x)的单调性得|2x-1|<,解得<x<.答案:(,)

试题详情

3.(2009年高考山东卷改编)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系为________.

解析:因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又因为f(x)在R上是奇函数,f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又因为f(x)在区间[0,2]上是增函数,所以f(1)>f(0)=0,所以-f(1)<0,即f(-25)<f(80)<f(11).

答案:f(-25)<f(80)<f(11)

试题详情

2.(2010年广东三校模拟)定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.

解析:f(x)为奇函数,且x∈R,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x+2)=f(x),令x=-1得f(1)=f(-1)=-f(1)⇒f(1)=0,所以f(1)+f(4)+f(7)=0.答案:0

试题详情

1.设偶函数f(x)=loga|xb|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为________.

解析:由f(x)为偶函数,知b=0,∴f(x)=loga|x|,又f(x)在(-∞,0)上单调递增,所以0<a<1,1<a+1<2,则f(x)在(0,+∞)上单调递减,所以f(a+1)>f(b+2).答案:f(a+1)>f(b+2)

试题详情

6.设函数,又,求的最小值、最大值以及取得最小值、最大值时的值.

试题详情

5.已知三种食物的维生素含量与成本如下表所示.

 
食物
食物
食物
维生素(单位/)
400
600
400
维生素(单位/)
800
200
400
成本(元/)
6
5
4

现在将的食物的食物的食物混合,制成100的混合物.如果这100的混合物中至少含维生素44000单位与维生素48000单位,那么为何值时,混合物的成本最小?

试题详情

4.某人有楼房一幢,室内面积共180,拟分隔成两类房间作为旅游客房.大房间每间面积为18,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?

试题详情

3.已知整点在不等式组表示的平面区域内,则    

试题详情

2.已知集合,集合,则的面积是      

试题详情


同步练习册答案