0  347351  347359  347365  347369  347375  347377  347381  347387  347389  347395  347401  347405  347407  347411  347417  347419  347425  347429  347431  347435  347437  347441  347443  347445  347446  347447  347449  347450  347451  347453  347455  347459  347461  347465  347467  347471  347477  347479  347485  347489  347491  347495  347501  347507  347509  347515  347519  347521  347527  347531  347537  347545  447090 

9.(2009年高考山东卷)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1x2x3x4,则x1+x2+x3+x4=________.

解析:因为定义在R上的奇函数,满足f(x-4)=-f(x),所以f(4-x)=f(x),因此,函数图象关于直线x=2对称且f(0)=0.由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1x2x3x4,不妨设x1x2x3x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8. 答案:-8

试题详情

8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=-2,则实数a=________.

解析:当x≥0时,f(x)=x(x+1)>0,由f(x)为奇函数知x<0时,f(x)<0,∴a<0,f(-a)=2,∴-a(-a+1)=2,∴a=2(舍)或a=-1.答案:-1

试题详情

7.(2010年安徽黄山质检)定义在R上的函数f(x)在(-∞,a]上是增函数,函数yf(x+a)是偶函数,当x1<ax2>a,且|x1a|<|x2a|时,则f(2ax1)与f(x2)的大小关系为________.

解析:∵yf(x+a)为偶函数,∴yf(x+a)的图象关于y轴对称,∴yf(x)的图象关于xa对称.又∵f(x)在(-∞,a]上是增函数,∴f(x)在[a,+∞)上是减函数.当x1<ax2>a,且|x1a|<|x2a|时,有ax1<x2a,即a<2ax1<x2,∴f(2ax1)>f(x2).答案:f(2ax1)>f(x2)

试题详情

6.(2010年江苏苏州模拟)已知函数f(x)是偶函数,并且对于定义域内任意的x,满足f(x+2)=-,若当2<x<3时,f(x)=x,则f(2009.5)=________.

解析:由f(x+2)=-,可得f(x+4)=f(x),f(2009.5)=f(502×4+1.5)=f(1.5)=f(-2.5)∵f(x)是偶函数,∴f(2009.5)=f(2.5)=.答案:

试题详情

5.(2009年高考江西卷改编)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2009)+f(2010)的值为________.

解析:∵f(x)是偶函数,∴f(-2009)=f(2009).∵f(x)在x≥0时f(x+2)=f(x),∴f(x)周期为2.∴f(-2009)+f(2010)=f(2009)+f(2010)=f(1)+f(0)=log22+log21=0+1=1.答案:1

试题详情

4.(2010年湖南郴州质检)已知函数f(x)是R上的偶函数,且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是________.

解析:在(0,+∞)上有f′(x)>0,则在(0,+∞)上f(x)是增函数,在(-∞,0)上是减函数,又f(x)在R上是偶函数,且f(-1)=0,∴f(1)=0.从而可知x∈(-∞,-1)时,f(x)>0;x∈(-1,0)时,f(x)<0;x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).

试题详情

3.(2010年浙江台州模拟)已知f(x)是定义在R上的奇函数,且f(1)=1,若将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=________.

解析:f(x)是定义在R上的奇函数,所以f(-x)=-f(x),将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则满足f(-2+x)=-f(x),即f(x+2)=-f(x),所以周期为4,f(1)=1,f(2)=f(0)=0,f(3)=-f(1)=-1,f(4)=0,所以f(1)+f(2)+f(3)+f(4)=0,则f(1)+f(2)+f(3)+…+f(2010)=f(4)×502+f(2)=0.答案:0

试题详情

2.已知定义在R上的函数f(x)满足f(x)=-f(x+),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+…+f(2009)+f(2010)=________.

解析:f(x)=-f(x+)⇒f(x+3)=f(x),即周期为3,由f(-2)=f(-1)=-1,f(0)=2,所以f(1)=-1,f(2)=-1,f(3)=2,所以f(1)+f(2)+…+f(2009)+f(2010)=f(2008)+f(2009)+f(2010)=f(1)+f(2)+f(3)=0.答案:0

试题详情

1.(2009年高考全国卷Ⅰ改编)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则下列结论正确的是________.

f(x)是偶函数 ②f(x)是奇函数 ③f(x)=f(x+2)

f(x+3)是奇函数

解析:∵f(x+1)与f(x-1)都是奇函数,∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),∴函数f(x)关于点(1,0),及点(-1,0)对称,函数f(x)是周期T=2[1-(-1)]=4的周期函数.∴f(-x-1+4)=-f(x-1+4),f(-x+3)=-f(x+3),即f(x+3)是奇函数.答案:④

试题详情

6.已知函数yf(x)是定义在R上的周期函数,周期T=5,函数yf(x)(-1≤x≤1)是奇函数,又知yf(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.(1)证明:f(1)+f(4)=0;(2)求yf(x),x∈[1,4]的解析式;(3)求yf(x)在[4,9]上的解析式.

解:(1)证明:∵f(x)是以5为周期的周期函数,∴f(4)=f(4-5)=f(-1),

又∵yf(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0.

(2)当x∈[1,4]时,由题意可设f(x)=a(x-2)2-5(a>0),由f(1)+f(4)=0,得a(1-2)2-5+a(4-2)2-5=0,∴a=2,∴f(x)=2(x-2)2-5(1≤x≤4).

(3)∵yf(x)(-1≤x≤1)是奇函数,∴f(0)=0,又知yf(x)在[0,1]上是一次函数,∴可设f(x)=kx(0≤x≤1),而f(1)=2(1-2)2-5=-3,∴k=-3,∴当0≤x≤1时,f(x)=-3x,从而当-1≤x<0时,f(x)=-f(-x)=-3x,故-1≤x≤1时,f(x)=-3x.∴当4≤x≤6时,有-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15.当6<x≤9时,1<x-5≤4,∴f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5.

f(x)=.

B组

试题详情


同步练习册答案