8.(2009年高考湖南卷改编)设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为________.
解析:由f(x)=2-|x|≤得x≥1或x≤-1,∴fK(x)=
则单调增区间为(-∞,-1].答案:(-∞,-1]
7.(2009年高考辽宁卷改编)已知函数f(x)满足:当x≥4时,f(x)=()x;当x<4时,f(x)=f(x+1),则f(2+log23)=________.
解析:∵2<3<4=22,∴1<log23<2.∴3<2+log23<4,∴f(2+log23)
=f(3+log23)=f(log224)=()log224=2-log224=2log2=.答案:
6.(2009年高考山东卷改编)函数y=的图象大致为________.
解析:∵f(-x)==-=-f(x),∴f(x)为奇函数,排除④.
又∵y====1+在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①
5.(2010年山东青岛质检)已知f(x)=()x,若f(x)的图象关于直线x=1对称的图象对应的函数为g(x),则g(x)的表达式为________.
解析:设y=g(x)上任意一点P(x,y),P(x,y)关于x=1的对称点P′(2-x,y)在f(x)=()x上,∴y=()2-x=3x-2.答案:y=3x-2(x∈R)
4.(2010年北京朝阳模拟)已知函数f(x)=ax(a>0且a≠1),其反函数为f-1(x).若f(2)=9,则f-1()+f(1)的值是________.
解析:因为f(2)=a2=9,且a>0,∴a=3,则f(x)=3x=,∴x=-1,
故f-1()=-1.又f(1)=3,所以f-1()+f(1)=2.答案:2
3.已知f(x),g(x)都是定义在R上的函数,且满足以下条件①f (x)=ax·g(x)(a>0,a≠1);②g(x)≠0;若+=,则a等于________.
解析:由f(x)=ax·g(x)得=ax,所以+=⇒a+a-1=,解得a=2或.答案:2或
2.(2010年保定模拟)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是________.
解析:f(x)=-x2+2ax=-(x-a)2+a2,所以f(x)在[a,+∞)上为减函数,又f(x),g(x)都在[1,2]上为减函数,所以需⇒0<a≤1.答案:(0,1]
1.如果函数f(x)=ax+b-1(a>0且a≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.
①0<a<1且b>0 ②0<a<1且0<b<1 ③a>1且b<0 ④a>1且b>0
解析:当0<a<1时,把指数函数f(x)=ax的图象向下平移,观察可知-1<b-1<0,即0<b<1.答案:②
6.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1.
从而有f(x)=.又由f(1)=-f(-1)知=-,解得a=2.
(2)法一:由(1)知f(x)==-+,
由上式易知f(x)在R上为减函数,又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0⇔f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.
即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-.
法二:由(1)知f(x)=,又由题设条件得+<0
即(22t2-k+1+2)(-2t2-2t+1)+(2t2-2t+1+2)(-22t2-k+1)<0
整理得23t2-2t-k>1,因底数2>1,故3t2-2t-k>0
上式对一切t∈R均成立,从而判别式Δ=4+12k<0,解得k<-.
B组
5.(原创题)若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a等于________.
解析:由题意知无解或⇒a=.答案:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com