4.
图4-4-5
为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星经过一年多的绕月运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图4-4-5为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是( )
A.可以求出月球表面的重力加速度
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点①处应减速
D.“嫦娥一号”在地面的发射速度大于11.2 km/s
解析:根据G=m2R,已知卫星的T、R和引力常量G,可以求月球的质量m1;因为不知道“嫦娥一号”卫星的质量,故无法知道月球对“嫦娥一号”卫星的引力,B项错误;在控制点①,卫星要做向心运动,故需要减速,C项正确;11.2 km/s是第二宇宙速度,是卫星脱离地球引力的束缚成为太阳的人造行星的最小发射速度,而“嫦娥一号”卫星并不能脱离地球引力的范围,故其发射速度小于11.2 km/s,D项错误.
答案:C
3.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R和r,则( )
A.甲、乙两颗卫星的加速度之比等于R∶r
B.甲、乙两颗卫星所受的向心力之比等于1∶1
C.甲、乙两颗卫星的线速度之比等于1∶1
D.甲、乙两颗卫星的周期之比等于R∶r
解析:由F=G和M=ρπR3可得万有引力F=GπRmρ,又由牛顿第二定律F=ma可得,A正确.卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B错误.由F=GπRmρ,F=m可得,选项C错误.由F=GπRmρ,F=mR可知,周期之比为1∶1,故D错误.
答案:A
2.(2009·全国Ⅰ,19)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11 N·m2/kg2,由此估算该行星的平均密度约为( )
A.1.8×103 kg/m3 B.5.6×103 kg/m3 C.1.1×104 kg/m3 D.2.9×104 kg/m3
解析:近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:G=m2R,由密度、质量和体积关系M=ρ·πR3解两式得:ρ=≈5.60×103 kg/m3.由已知条件可知该行星密度是地球密度的25/4.7倍,即ρ=5.60×103× kg/m3=2.9×104 kg/m3.
答案:D
1.
图4-4-4
三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC.若在某一时刻,它们正好运行到同一条直线上,如图4-4-4所示.那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是( )
答案:C
5.
图4-3-10
(2010·诸城模拟)如图4-3-10所示,半径为R,内径很小的光滑半圆管道竖直放置,质量为m的小球以某一速度进入管内,小球通过最高点P时,对管壁的压力为0.5mg.求:
(1)小球从管口飞出时的速率;
(2)小球落地点到P点的水平距离.
解析:(1)分两种情况,当小球对管下部有压力时,则有mg-0.5mg=,v1=.当小球对管上部有压力时,则有mg+0.5mg=,v2=
(2)小球从管口飞出做平抛运动,2R=gt2,t=2 ,x1=v1t=R,x2=v2t=R.
答案:(1) 或 (2)R或R
4.
图4-3-9
某实验中学的学习小组在进行科学探测时,一位同学利用绳索顺利跨越了一道山涧,他先用绳索做了一个单摆(秋千),通过摆动,使自身获得足够速度后再平抛到山涧对面,如图4-3-9所示,若他的质量是M,所用绳长为L,在摆到最低点B处时的速度为v,离地高度为h,当地重力加速度为g,则:
(1)他用的绳子能承受的最大拉力不小于多少?
(2)这道山涧的宽度不超过多大?
解析:(1)该同学在B处,由牛顿第二定律得:F-Mg=M,
解得:F=Mg+M,即他用的绳子能承受的最大拉力不小于Mg+M.
(2)对该同学做平抛运动的过程由运动学公式得:水平方向有:x=vt,竖直方向有: h=gt2,
解得:x=v ,即这道山涧的宽度不超过v .
答案:(1)Mg+M (2)v
3.
图4-3-8
(2010·西南师大附中模拟)如图4-3-8所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )
A.小球通过最高点时的最小速度vmin=
B.小球通过最高点时的最小速度vmin=0
C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力
D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力
解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:FN-Fmg=m,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.
答案:BC
2.
图4-3-7
m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,如图4-3-7所示,已知皮带轮半径为 r,传送带与皮带轮间不会打滑,当m可被水平抛出时,A轮每秒的转数最少是( )
A. B. C. D.
解析:当m被水平抛出时只受重力的作用,支持力N=0.在圆周最高点,重力提供向心力,即mg=,所以v=.而v=2πf·r,所以f== ,所以每秒的转数最小为 ,A正确.
答案:A
1.
图4-3-6
质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点,如图4-3-6所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时杆子停止转动,则( )
A.小球仍在水平面内做匀速圆周运动
B.在绳被烧断瞬间,a绳中张力突然增大
C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动
D.若角速度ω较大,小球可在垂直于平面ABC的竖直平面内做圆周运动
解析:绳b烧断前,竖直方向合力为零,即Fa=mg,烧断b后,因惯性,要在竖直面内做圆周运动,且Fa′-mg=m,所以Fa′>Fa,A错B对,当ω足够小时,小球不能摆过AB所在高度,C对,当ω足够大时,小球在竖直面内能通过AB上方最高点,从而做圆周运动,D对.
答案:BCD
12.
图4-2-26
如图4-2-26所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:
(1)小球从圆弧轨道上释放时的高度为H;
(2)转筒转动的角速度ω.
解析:(1)设小球离开轨道进入小孔的时间为t,则由平抛运动规律得h=gt2,
L-R=v0t
小球在轨道上运动过程中机械能守恒,故有mgH=mv
联立解得:t= ,H=.
(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,
即ωt=2nπ(n=1,2,3…).所以ω=nπ (n=1,2,3…)
答案:(1) (2)nπ (n=1,2,3…)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com