4.(2010天水模拟)如图,在平面直解坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0)(4,3),动点M,N分别从点O,B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NPBC,交AC于点P,连结MP,当两动点运动了t秒时。
(1)P点的坐标为(4-t,)(用含t的代数式表示)。
(2)记△MPA的面积为S,求S与t的函数关系式(0<t<4)
(3)当t= 秒时,S有最大值,最大值是
(4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式。
(1)4-t, t
(2)S=MA·PD=(4-t)t S=(0<t<4)
(3)当t===2s S有最大值, S最大=(平方单位)
(4)设Q(0,m)①AN=AQ AN2=AQ2
22+32=16+M2
M2=-3 ∴此方程无解,故此情况舍去.
②AN=NQ AN2=NQ2
13=22+(3-m)2 3-m=± m=0,m2=6
∴Q=(0,0) ∴AQ:y=0
③NQ=AQ
4+(3-M)2=16+M2
M=- ∴(0, ) AQ:y=2x
3.(2010年河南中考模拟题4)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是__________,点C的坐标是__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.
答案:(1)(4,0) (0,3)
(2)当0<t≤4时,OM=t.
由△OMN∽△OAC,得,
∴ ON=,S=×OM×ON=.
当4<t<8时,
如图,∵ OD=t,∴ AD= t-4.
由△DAM∽△AOC,可得AM=.
而△OND的高是3.
S=△OND的面积-△OMD的面积
=×t×3-×t×
=.
(3) 有最大值.
方法一:
当0<t≤4时,
∵ 抛物线S=的开口向上,在对称轴t=0的右边, S随t的增大而增大,
∴ 当t=4时,S可取到最大值=6;
当4<t<8时,
∵ 抛物线S=的开口向下,它的顶点是(4,6),
∴ S<6.
综上,当t=4时,S有最大值6.
方法二:
∵ S=
∴ 当0<t<8时,画出S与t的函数关系图像,如图所示.
显然,当t=4时,S有最大值6.
2.(2010年河南中考模拟题3)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N. 以MN为直径作⊙O,并在⊙O内作内接矩形AMPN,令AM=x.
(1) 当x为何值时,⊙O与直线BC相切?
(2)在动点M的运动过程中,记△MNP与梯
形BCNM重合的面积为y,试求y与x间函数
关系式,并求x为何值时,y的值最大,最大值是多少?
答案:(1)如图,设直线BC与⊙O相切于点D,连接OA、OD,则OA=OD=MN
在Rt⊿ABC中,BC==5
∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C
⊿AMN∽⊿ABC,∴,,
∴MN=x, ∴OD=x
过点M作MQ⊥BC于Q,则MQ=OD=x,
在Rt⊿BMQ和Rt⊿BCA中,∠B是公共角
∴Rt⊿BMQ∽Rt⊿BCA,
∴,∴BM==x,AB=BM+MA=x +x=4,∴x=
∴当x=时,⊙O与直线BC相切,
(3)随着点M的运动,当点P 落在BC上时,连接AP,则点O为AP的中点。
∵MN∥BC,∴∠AMN=∠B,∠AOM=∠APC
∴⊿AMO∽⊿ABP,∴=,AM=BM=2
故以下分两种情况讨论:
① 当0<x≤2时,y=S⊿PMN=x2.
∴当x=2时,y最大=×22=
② 当2<x<4时,设PM、PN分别交BC于E、F
∵四边形AMPN是矩形,
∴PN∥AM,PN=AM=x
又∵MN∥BC,∴四边形MBFN是平行四边形
∴FN=BM=4-x,∴PF=x-(4-x)=2x-4,
又⊿PEF∽⊿ACB,∴()2=
∴S⊿PEF=(x-2)2,y= S⊿PMN- S⊿PEF=x-(x-2)2=-x2+6x-6
当2<x<4时,y=-x2+6x-6=-(x-)2+2
∴当x=时,满足2<x<4,y最大=2。
综合上述,当x=时,y值最大,y最大=2。
1.( 2010年山东菏泽全真模拟1) 如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边.
(1)求直线的解析式;
(2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;
(3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值.
答案:解:(1)直线的解析式为:.
(2)方法一,,,,
, ,
是等边三角形,,
,.
方法二,如图1,过分别作轴于,轴于,
可求得,
,
,
当点与点重合时,
,
.
,
.
(3)①当时,见图2.
设交于点,
重叠部分为直角梯形,
作于.
,,
,
,
,
,
,
,
.
随的增大而增大,
当时,.
②当时,见图3.
设交于点,
交于点,交于点,
重叠部分为五边形.
方法一,作于,,
,
,
.
方法二,由题意可得,,,,
再计算
,
.
,当时,有最大值,.
③当时,,即与重合,
设交于点,交于点,重叠部
分为等腰梯形,见图4.
,
综上所述:当时,;
当时,;
当时,.
,
的最大值是.
5.(2010年 中考模拟2)如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .
答案:14或16或26
4.(2010年 中考模拟)(河南省)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,
折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移
动的最大距离为 。
答案:2
3.(江西南昌一模)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,于点C,交的图象于点A,于点D,交的图象于点B,当点P在的图象上运动时,以下结论:
①△ODB与△OCA的面积相等;
②四边形PAOB的面积不会发生变化;
③与始终相等;
④当点A是PC的中点时,点B一定是PD的中点.
其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).
答案:①②④
2.(2010年河南中考模拟题3)如图,已知点F的坐标为(3,0),点A、B分别是某函数图像与x轴、y轴的交点,点P 是此图像上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-x(0≤x≤5),则结论:① AF= 2 ② BF=5 ③ OA=5 ④ OB=3中,正确结论的序号是 。
答案:①②③
1.(2010年河南中考模拟题5)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 .
答案:2.4
7.(2010年中考模拟)(北京市) 如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点, 且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=,DE=,下列中图象中,能表示与的函数关系式的图象大致是( )
答案:A
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com