4.(2010年河南中考模拟题4)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是__________,点C的坐标是__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.
答案:(1)(4,0) (0,3)
(2)当0<t≤4时,OM=t.
由△OMN∽△OAC,得,
∴ ON=,S=×OM×ON=. (6分)
当4<t<8时,
如图,∵ OD=t,∴ AD= t-4.
由△DAM∽△AOC,可得AM=.(7分)
而△OND的高是3.
S=△OND的面积-△OMD的面积
=×t×3-×t×
=. ( 10分)
(3) 有最大值.
方法一:
当0<t≤4时,
∵ 抛物线S=的开口向上,在对称轴t=0的右边, S随t的增大而增大,
∴ 当t=4时,S可取到最大值=6; (11分)
当4<t<8时,
∵ 抛物线S=的开口向下,它的顶点是(4,6),
∴ S<6.
综上,当t=4时,S有最大值6.
方法二:
∵ S=
∴ 当0<t<8时,画出S与t的函数关系图像,如图所示.
显然,当t=4时,S有最大值6.
2.(2010年河南中考模拟题1)如图,已知,抛物线
的顶点P在x轴上,与y轴交于点Q,过坐标原点O作 ,垂足为A,且
(1)求b的值;
(2)求抛物线的解析式。
答案:(1)
(2)
3.(2010年河南中考模拟题3)如图,在中,∠°,, 的面积为,点为边上的任意一点(不与、重合),过点作∥,交于点.设以为折线将△翻折,所得的与梯形重叠部分的面积记为y.
(1).用x表示∆ADE的面积;
(2).求出﹤≤时y与x的函数关系式;
(3).求出﹤﹤时y与x的函数关系式;
(4).当取何值时,的值最大?最大值是多少?
答案:(1)如图,设直线BC与⊙O相切于点D,连接OA、OD,则OA=OD=MN
在Rt⊿ABC中,BC==5
∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C
⊿AMN∽⊿ABC,∴,,
∴MN=x, ∴OD=x
过点M作MQ⊥BC于Q,则MQ=OD=x,
在Rt⊿BMQ和Rt⊿BCA中,∠B是公共角
∴Rt⊿BMQ∽Rt⊿BCA,
∴,∴BM==x,AB=BM+MA=x +x=4,∴x=
∴当x=时,⊙O与直线BC相切,
(3)随着点M的运动,当点P 落在BC上时,连接AP,则点O为AP的中点。
∵MN∥BC,∴∠AMN=∠B,∠AOM=∠APC
∴⊿AMO∽⊿ABP,∴=,AM=BM=2
故以下分两种情况讨论:
① 当0<x≤2时,y=S⊿PMN=x2.
∴当x=2时,y最大=×22=
② 当2<x<4时,设PM、PN分别交BC于E、F
∵四边形AMPN是矩形,
∴PN∥AM,PN=AM=x
又∵MN∥BC,∴四边形MBFN是平行四边形
∴FN=BM=4-x,∴PF=x-(4-x)=2x-4,
又⊿PEF∽⊿ACB,∴()2=
∴S⊿PEF=(x-2)2,y= S⊿PMN- S⊿PEF=x-(x-2)2=-x2+6x-6
当2<x<4时,y=-x2+6x-6=-(x-)2+2
∴当x=时,满足2<x<4,y最大=2。
综合上述,当x=时,y值最大,y最大=2。
1.(2010年山东宁阳一模)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不超过45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数,且时,;时,.
(1)若该商场获利为w元,试写出利润w与销售单价x之间的关系式,售价定为多少元时,商场可以获利最大,最大利润为多少元?
(2)若该商场获利不低于500元,试确定销售单价x的范围.
答案:(1)将 代入中
∴
∴W =
W =
W =
又∵60≤x≤60×(1+45%) 即60≤x≤87 则x=87时获利最多
将x=87代入,得W=-(87-90)2+900=891元
(2)
(舍去)
则,但 ∴
答:(1)x为87元有最大利润为891元;(2)范围为
16.(2010年 湖里区 二次适应性考试)抛物线的顶点坐标是 .
答案:(-1,5)
15.(2010重庆市綦江中学模拟1)抛物线y=(x-1)2+3的顶点坐标为 .
答案 (1,3) ;
14.(2010三亚市月考)Y=-2(x-1)2 +5 的图象开口向 ,顶点坐标为 ,当x>1时,y值随着x值的增大而 。
答案:下 ,(1,5),减小 ;
13.(10年广州市中考七模)、抛物线+3与坐标轴的交点共有 个。
答案:3
12.(江西南昌一模)二次函数的最小值是
答案:-3
11.(2010 河南模拟)已知二次函数(为常数)图像上的三点:A,B,C,其中,=,,则的大小关系是 。
答案:y1>y2>y
10.(2010年杭州月考)若一边长为40㎝的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为 ㎝.(铁丝粗细忽略不计)
答案:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com