14.(2010福建模拟)如图,在平面直角坐标系中,直线与轴交于点A,与y轴交于点C. 抛物线经过A、C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M、F、B、P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
解:(1) 当y=0时, ∴A(-1, 0)
当x=0时, ∴ C(0,-3)
∴ ∴
抛物线的解析式是:
当y=0时, 解得: x1=-1 x2=3 ∴ B(3, 0)
(2)由(1)知 B(3, 0) , C(0,-3) 直线BC的解析式是:
设M(x,x-3)(0≤x≤3),则E(x,x2-2x-3)
∴ME=(x-3)-( x2-2x-3)=- x2+3x =
∴当 时,ME的最大值=
(3)答:不存在.
由(2)知 ME 取最大值时ME= ,E,M
∴MF=,BF=OB-OF=.
设在抛物线x轴下方存在点P,使以P、M、F、B为顶点的四边形是平行四边形,
则BP∥MF,BF∥PM. ∴P1 或 P2
当P1 时,由(1)知
∴P1不在抛物线上.
当P2 时,由(1)知
∴P1不在抛物线上.
综上所述:抛物线x轴下方不存在点P,使以P、M、F、B为顶点的四边形是平行四边形.
13.(2010天水模拟)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
第(1)问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0;.其中正确结论的序号(答对得3分,少选、错选均不得分)
第(2)问:给出四个结论:①abc<0②2a+b>0③a+c=1④a>1.其中正确结论的序号(答对得5分,少选、错选均不得分)
答案:a>0; b<0; C<0 abc>0;
2a+b>0 2a>-b 1>
①+②得 2a+2c=2 a+c=1 a=1-c
12.(2010天水模拟)已知:抛物线y=-x2+4x-3与x轴相交于A、B,两点(A点在B点的左侧),顶点为这。
(1)求A、B、P三点坐标;
(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;
(3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由。
解:(1)-x2+4x-3=0 x2-4x+3=0 (x-1)(x-3)=0 x1=1,x2=3
H===2 k==
∴A(1,0) B(3,0) P(2,1)
(2)略
(3)
将①代入②中 -x2+4x-3=-2x+6
-x2+6x-9=0
△=36-4×(-1)×(-9)
=36-36=0
∴只有一个
11.(2010年铁岭市加速度辅导学校)已知:抛物线经过点.
(1)求的值;
(2)若,求这条抛物线的顶点坐标;
(3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
解:(1)依题意得:,
.
(2)当时,,
抛物线的顶点坐标是.
(3)当时,抛物线对称轴,
对称轴在点的左侧.
因为抛物线是轴对称图形,且.
.
.
又,.
抛物线所对应的二次函数关系式.
解法2:(3)当时,,
对称轴在点的左侧.因为抛物线是轴对称图形,
,且
.
又,解得:
这条抛物线对应的二次函数关系式是.
解法3:(3),,
分
轴,
即:.
解得:,即
由,.
这条抛物线对应的二次函数关系式
10.(2010年江苏省泰州市济川实验初中中考模拟题) 某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) |
1 |
2 |
2.5 |
3 |
5 |
yA(万元) |
0.4 |
0.8 |
1 |
1.2 |
2 |
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式.
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
答案:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润5.8万元.
9.(2010年江苏省泰州市济川实验初中中考模拟题) 如图1,把一个边长为2的正方形ABCD放在平面直角坐标系中,点A在坐标原点,点C在y轴的正半轴上,经过B、C、D三点的抛物线c1交x轴于点M、N(M在N的左边).
(1)求抛物线c1的解析式及点M、N的坐标;
(2)如图2,另一个边长为2的正方形的中心G在点M上,、在x轴的负半轴上(在的左边),点在第三象限,当点G沿着抛物线c1从点M移到点N,正方形随之移动,移动中始终与x轴平行.
①直接写出点、移动路线形成的抛物线、的函数关系式;
②如图3,当正方形第一次移动到与正方形ABCD有一边在同一直线上时,
求点G的坐标.
答案:(1)y=-x2+4, M(,0),N(,0)
(2)①yA'=-x2+2 , yB'=-(x-2)2+4 ②G(1-,-3+)
8.(2010年江苏省泰州市济川实验初中中考模拟题)已知抛物线的部分图象如图所示.
(1)求b、c的值;
(2)求y的最大值;
(3)写出当时,x的取值范围.
答案:(1)b=-2,c=3
(2) 4
(3) x<-3或x>1
7.(2010年吉林中考模拟题)如图,在直角坐标系中,矩形ABCD的边AD在y轴正半轴上,点A、C的坐标分别为(0,1)、(2,4).点P从点A出发,沿A→B→C以每秒1个单位的速度运动,到点C停止;点Q在x轴上,横坐标为点P的横、纵坐标之和.抛物线经过A、C两点.过点P作x轴的垂线,垂足为M,交抛物线于点R.设点P的运动时间为t(秒),△PQR的面积为S(平方单位).
(1)求抛物线对应的函数关系式.
(2)分别求t=1和t=4时,点Q的坐标.
(3)当0<≤5时,求S与t之间的函数关系式,并直接写出S的最大值.
[参考公式:抛物线的顶点坐标为,.]
答案:(1)由抛物线经过点A(0,1),C(2,4),
得解得
∴抛物线对应的函数关系式为:.
(2)当时,P点坐标为(1,1),∴Q点坐标为(2,0).
当时,P点坐标为(2,3),∴Q点坐标为(5,0).
(3)当≤2时,.
S.
当≤5时,.
S.
当时,S的最大值为2.
6.(2010年河南中考模拟题6)如图,在平面直角坐标系x0y中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点。抛物线与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切与点A和点C。
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由。
答案:(1),
(2),
(3)点P在抛物线上,
设yDC=kx+b,将(0,1),(1,0),带入得k=-1,b=1,
∴直线CD为y=-x+1,
∵过点B作⊙O的切线BP与x轴平行,
∴P点的纵坐标为-1,
把y=-1带入y=-x+1得x=2,
∴P(2,-1),
将x=2带入,得 y=-1,
∴点P在抛物线上。
5.(2010年河南中考模拟题5)二次函数的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).
(1)试求,所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积
的倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.
答案:解:(1)将A(1,0),B(0,l)代入得
,可得:
(2)由(1)可知: ,顶点M的纵坐标为,
因为,由同底可知:,
整理得:,得:
由图象可知:,因为抛物线过点(0,1),顶点M在第二象限,其对称轴x=,
∴, ∴舍去,从而
(3)① 由图可知,A为直角顶点不可能;
② 若C为直角顶点,此时与原点O重合,不合题意;
③ 若设B为直角顶点,则可知,得:
令,可得:,
得:
.
解得:,由-1<a<0,不合题意.所以不存在.
综上所述:不存在.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com