7.(2010年宁波调研)已知圆C:x2+y2+bx+ay-3=0(a、b为正实数)上任意一点关于直线l:x+y+2=0的对称点都在圆C上,则+的最小值为________.
解析:由题意,知圆心在直线上,所以-+(-)+2=0,
∴+=1,则(+)(+)=1++≥1+2 =1+.
6.(2009年高考全国卷Ⅱ)已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为________.
解析:设圆心O到AC、BD的距离分别为d1、d2,则d12+d22=OM2=3.
四边形ABCD的面积S=|AB|·|CD|=2≤8-(d12+d22)=5.
5.若集合A={(x,y)|y=1+},B={(x,y)|y=k(x-2)+4}.当集合A∩B有4个子集时,实数k的取值范围是________________.
解析:A∩B有4个子集,即A∩B有2个元素,∴半圆x2+(y-1)2=4(y≥1)与过P(2,4)点,斜率为k的直线有两个交点,如图:A(-2,1),kPA=,过P与半圆相切时,k=,∴<k≤.
答案:<k≤
4.过点A(11,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有__条.
解析:方程化为(x+1)2+(y-2)2=132,圆心为(-1,2),到点A(11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求直线条数为2+2×(25-10)=32(条).答案:32
3.已知向量a=(cosα,sinα),b=(cosβ,sinβ),a与b的夹角为60°,直线xcosα+ysinα=0与圆(x+cosβ)2+(y+sinβ)2=的位置关系是________.
解析:cos60°=cosα·cosβ+sinα·sinβ=cos(α-β),
d==|cos(α-β)|=>=r.答案:相离
2.(2010年秦州质检)已知直线y=-x与圆x2+y2=2相交于A、B两点,P是优弧AB上任意一点,则∠APB=____________.
解析:弦心距长为,半径为,所以弦AB所对的圆心角为,又因为同弦所对的圆周角是圆心角的一半,所以∠APB=.答案:
1.直线ax+by+b-a=0与圆x2+y2-x-3=0的位置关系是________.
解析:直线方程化为a(x-1)+b(y+1)=0,过定点(1,-1),代入圆的方程,左侧小于0,则定点在圆内,所以直线与圆总相交.答案:相交
6.(2010年南京调研)已知:以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
解:(1)证明:∵圆C过原点O,∴OC2=t2+.设圆C的方程是(x-t)2+(y-)2=t2+,令x=0,得y1=0,y2=;令y=0,得x1=0,x2=2t.
∴S△OAB=OA·OB=×||×|2t|=4,即△OAB的面积为定值.
(2)∵OM=ON,CM=CN,∴OC垂直平分线段MN.∵kMN=-2,∴kO C=,
∴直线OC的方程是y=x.∴=t,解得:t=2或t=-2.
当t=2时,圆心C的坐标为(2,1),OC=,此时圆心C到直线y=-2x+4的距离d=<,圆C与直线y=-2x+4相交于两点.
当t=-2时,圆心C的坐标为(-2,-1),OC=,此时圆心C到直线y=-2x+4的距离d=>,圆C与直线y=-2x+4不相交,
∴t=-2不符合题意舍去.∴圆C的方程为(x-2)2+(y-1)2=5.
B组
5.(原创题)已知直线x-y+2m=0与圆x2+y2=n2相切,其中m,n∈N*,且n-m<5,则满足条件的有序实数对(m,n)共有________个.
解析:由题意可得,圆心到直线的距离等于圆的半径,即2m-1=n,所以
2m-1-m<5,因为m,n∈N*,所以,,,,故有序实数对(m,n)共有4个.答案:4个
4.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是________.
解析:将圆x2+y2-2x+4y+4=0化为标准方程,得(x-1)2+(y+2)2=1,圆心为(1,-2),半径为1.
若直线与圆无公共点,即圆心到直线的距离大于半径,
即d==>1,∴m<0或m>10.
答案:(-∞,0)∪(10,+∞)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com