0  354375  354383  354389  354393  354399  354401  354405  354411  354413  354419  354425  354429  354431  354435  354441  354443  354449  354453  354455  354459  354461  354465  354467  354469  354470  354471  354473  354474  354475  354477  354479  354483  354485  354489  354491  354495  354501  354503  354509  354513  354515  354519  354525  354531  354533  354539  354543  354545  354551  354555  354561  354569  447090 

3.组合数性质:

试题详情

2.组合数公式:(m≤n),

试题详情

1.排列数公式:=n(n-1)(n-2)…(n-m+1)=(m≤n,m、n∈N*),当m=n时为全排列=n(n-1)(n-2)…3.2.1;

试题详情

12.球的体积公式V=,表面积公式;掌握球面上两点A、B间的距离求法:(1)计算线段AB的长,(2)计算球心角∠AOB的弧度数;(3)用弧长公式计算劣弧AB的长;

试题详情

11.欧拉公式:如果简单多面体的顶点数为V,面数为F,棱数为E.那么V+F-E=2;并且棱数E=各顶点连着的棱数和的一半=各面边数和的一半;

试题详情

10.正方体和长方体的外接球的直径等与其体对角线长;

试题详情

9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为因此有cos2+cos2+cos2=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为则有cos2+cos2+cos2=2;

试题详情

8.正棱锥的各侧面与底面所成的角相等,记为,则Scos=S

试题详情

7.空间距离的求法

(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;

试题详情

6.二面角的求法

(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

(4)射影法:利用面积射影公式S=Scos,其中为平面角的大小,此方法不必在图形中画出平面角;

特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

试题详情


同步练习册答案