0  354789  354797  354803  354807  354813  354815  354819  354825  354827  354833  354839  354843  354845  354849  354855  354857  354863  354867  354869  354873  354875  354879  354881  354883  354884  354885  354887  354888  354889  354891  354893  354897  354899  354903  354905  354909  354915  354917  354923  354927  354929  354933  354939  354945  354947  354953  354957  354959  354965  354969  354975  354983  447090 

19.图示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为BE.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是

A.质谱仪是分析同位素的重要工具

B.速度选择器中的磁场方向垂直纸面向外

 

C.能通过狭缝P的带电粒子的速率等于

D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小

试题详情

18.现有三个核反应:

①     →     +____;

 

②     +    →     +     +____;

 ③    +    →    + ____.

 完成上述核反应方程,并判断下列说法正确的是

 A.①是裂变,②是β衰变,③是聚变

 B.①是聚变,②是裂变,③是β衰变

 C.①是β衰变,②是裂变,③是聚变

 D.①是β衰变,②是聚变,③是裂变

试题详情

17.为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的嫦娥一号卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16日13分成功撞月.图示为嫦娥一号卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息

A.可以求出月球的质量

 B.可以求出月球对嫦娥一号卫星的引力

 C.可知嫦娥一号卫星在控制点1处应减速

D.可知嫦娥一号在地面的发射速度大于11.2 km/s 

试题详情

16.图甲为一列简谐横波在某一时刻的波形图,图乙为质点P以此时刻为计时起点的振动图象.则从该时刻起

A.经过0.35 s后,质点Q距平衡位置的距离小于质点P距平衡位置的距离

 B.经过0.25 s后,质点Q的加速度大于质点P的加速度

 C.经过0.15 s后,波沿x轴的正方向传播了3 m

 D.经过0.1 s后,质点Q的运动方向沿y轴的正方向

试题详情

15.如图所示,在水平传送带上有三个质量分别为m1m2m3的木块1、2、3,中间分别用一原长为L,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数为,现用水平细绳将木块1固定在左边的墙上,传送带按图示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是

A.2L+(m2+m3)g/k     

B.2L+(m2+2m3)g/k

C.2L+(m1+m2+m3)g/k    

D.2L+m3g/k

试题详情

14. 在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等.以下关于所用物理学研究方法的叙述不正确的是

A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法

B.根据速度定义式,当非常非常小时,就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想方法

C.在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系,该实验应用了控制变量法

D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法

试题详情

(二)电磁感应中的一个推论--安培力的冲量公式

[例5]在光滑水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一边长为a(a<L)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(v<v0)那么

A.完全进入磁场中时线圈的速度大于(v0+v)/2;

B.安全进入磁场中时线圈的速度等于(v0+v)/2;

C.完全进入磁场中时线圈的速度小于(v0+v)/2;

D.以上情况A、B均有可能,而C是不可能的

解析:设线圈完全进入磁场中时的速度为vx。线圈在穿过磁场的过程中所受合外力为安培力。对于线圈进入磁场的过程,据动量定理可得:

对于线圈穿出磁场的过程,据动量定理可得:

 [来源:]

由上述二式可得,即B选项正确。

[例6]光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。

解析:当金属棒ab做切割磁力线运动时,要产生感应电动势,这样,电容器C将被充电,ab棒中有充电电流存在,ab棒受到安培力的作用而减速,当ab棒以稳定速度v匀速运动时,有:BLv=UC=q/C[来源:]

而对导体棒ab利用动量定理可得:-BLq=mv-mv0 由上述二式可求得:

例7.如图,电动机牵引一根原来静止的、长L为1m、质量m为0.1kg的导体棒MN上升,导体棒的电阻R为1Ω,架在竖直放置的框架上,它们处于磁感应强度B为1T的匀强磁场中,磁场方向与框架平面垂直。当导体棒上升h=3.8m时,获得稳定的速度,导体棒上产生的热量为2J,电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,求:

(1)棒能达到的稳定速度;

(2)棒从静止至达到稳定速度所需要的时间。

解析:(1)电动机的输出功率为:W

 其中F为电动机对棒的拉力,

当棒达稳定速度时    感应电流解得m/s

(2)从棒由静止开始运动至达到稳定速度的过程中,电动机提供的能量转化为棒的机械能和内能,由能量守恒定律得:, 解得  t = 1s

试题详情

(一)电磁感应中的“双杆问题”

[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

解析:设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1v2,经过很短的时间△t,杆甲移动距离v1t,杆乙移动距离v2t,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势

回路中的电流 , 杆甲的运动方程

由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量

联立以上各式解得  [来源:]

代入数据得

[例4]两根相距d=0.20m平行金属长导轨固定在同一水平面,处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示.不计导轨上的摩擦.

(1)求作用于每条金属细杆的拉力的大小.

(2)求两金属细杆在间距增加0.40m的滑动过程共产生的热量.

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为: E1=E2=Bdv

由闭合电路的欧姆定律,回路中的电流强度大小为:

因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd

由以上各式并代入数据得N

(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得 Q=1.28×10-2J.

试题详情

分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,然后利用能量守恒列出方程求解。

[例2]如图,两根间距为l的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段组成。其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m。,电阻为2r。另一质量为m,电阻为r的金属棒ab,从圆弧段M处由静止释放滑至N处进入水平段,圆弧段MN半径R,所对圆心角为60°,求:

(1)ab棒在N处进入磁场区速度多大?此时棒中电流是多少?

(2)ab棒能达到的最大速度是多大?

(3)ab棒由静止到达最大速度过程中,系统所能释放的热量是多少?

解析:(1)ab棒由静止从M滑下到N的过程中,只有重力做功,机械能守恒,所以到N处速度可求,进而可求ab棒切割磁感线时产生的感应电动势和回路中的感应电流。

ab棒由M下滑到N过程中,机械能守恒,故有:

   解得

进入磁场区瞬间,回路中电流强度为 

 (2)设ab棒与cd棒所受安培力的大小为F,安培力作用时间为tab 棒在安培力作用下做减速运动,cd棒在安培力作用下做加速运动,当两棒速度达到相同速度v′时,电路中电流为零,安培力为零,cd达到最大速度。

运用动量守恒定律得     解得 

(3)释放热量等于系统机械能减少量,有 解得

试题详情

解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等。

[例1]如图,ABCD是两根足够长的固定平行金属导轨,两导轨间的距离为L,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B,在导轨的 AC端连接一个阻值为 R的电阻,一根质量为m、垂直于导轨放置的金属棒ab,从静止开始沿导轨下滑,求此过程中ab棒的最大速度。已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计。

解析:ab沿导轨下滑过程中受四个力作用,即重力mg,支持力FN 、摩擦力Ff和安培力F,如图所示,ab由静止开始下滑后,将是,所以这是个变加速过程,当加速度减到a=0时,其速度即增到最大v=vm,此时必将处于平衡状态,以后将以vm匀速下滑

 E=BLv      I=E/R  ②    F=BIL  ③

ab所受的力正交分解,FN = mgcosθ  Ff= μmgcosθ

由①②③可得

ab为研究对象,根据牛顿第二定律应有:mgsinθ μmgcosθ-=ma

ab做加速度减小的变加速运动,当a=0时速度达最大

因此,ab达到vm时应有:mgsinθ μmgcosθ-=0 

由④式可解得

试题详情


同步练习册答案