22.(本小题满分14分)已知f(x)=ax3+bx2+cx+d是定义在R上的函数,其图象交x轴于A,B,C,三点,若点B的坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)在函数f(x)的图象上是否存在一点M(x0,y0),使得f(x)在点M处的切线斜率为3b?若存在,求出点M的坐标;若不存在,说明理由;
(3)求|AC|的取值范围.
21.(本小题满分12分) 在平面直角坐标系中,O为坐标原点,已知两点M (1,-3)、N(5,1),若点C满足 =t +(1-t) (t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点。
(1)求证: ⊥ ;
(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出 m的值及圆心的轨迹方程;若不存在,请说明理由.
20.(本小题满分12分)已知数列{an}的前n项和S n,且对一切正整数n恒成立.
(1)证明数列{an+3}为等比数列;
(2)数列{an}是否存在三项构成等差数列?若存在,求出一组;若不存在,请说明理由.
19.(本小题满分12分) 如图,在四棱维P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E是PB的中点.
(1)求异面直线PD与AE所成角的大小;
(2)在平面PAD内求一点F,使得EF⊥平面PBC;
(3)在(2)的条件下,求二面角F-PC-E的大小.
18.(本小题满分12分) 甲、乙、丙三人分别独立解一道数学题,已知甲做对这道题的概率是,甲、丙两人都做错的概率是,乙、丙两人都做对的概率是.
(1)求乙、丙两人各自做对这道题的概率;
(2)求做对该题人数随机变量的分布列和E.
17.(本小题满分12分) 在△ABC中,角A、B、C的对边分别为a、b、c,.
(1)求角C的大小;
(2)求△ABC的面积.
16.对于任意x∈R,若关于x的不等式恒成立,则实数a的取值范围是______________.
15.编辑一个运算程序:2*2006=1,,则2008*2006的输出结果为_____________.
|
|
14.已知且,x,y满足,则的最大值__________.
12.(n∈N*)的整数部分和小数部分分别为In和Fn,则Fn (Fn +In)的值为
A.1 B.2 C.4 D.与n有关的数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com