0  358406  358414  358420  358424  358430  358432  358436  358442  358444  358450  358456  358460  358462  358466  358472  358474  358480  358484  358486  358490  358492  358496  358498  358500  358501  358502  358504  358505  358506  358508  358510  358514  358516  358520  358522  358526  358532  358534  358540  358544  358546  358550  358556  358562  358564  358570  358574  358576  358582  358586  358592  358600  447090 

3.下列各组原子序数的表示的两种元素,能形成AB2型化合物的是   

A.12和16    B.13和16    C.11和17    D.6和8

试题详情

2.某些建筑材料含有放射性元素氡(),会对人体产生一定危害。该原子中中子数和质子数之差是              

A.136      B.50      C.86     D.222

试题详情

1.19世纪门捷列夫的突出贡献是              

A.提出了原子学说           B.提出了分子学说

C.发现了稀有气体           D.发现了元素周期律

试题详情

[例2]如图所示,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3kg的小球BA的重心到O点的距离为0.2m.若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围.

解析:要使B静止,A必须相对于转盘静止--具有与转盘相同的角速度.A需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O

对于BT=mg      对于A,  

rad/s    rad/s   所以  2.9 rad/s rad/s 

[例3]一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1m2Rv0应满足的关系式是______.

解析:A球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B球对圆管的压力一定是竖直向上的,所以圆管对B球的压力一定是竖直向下的.

最高点时

根据牛顿运动定律

对于A球,     对于B球,

N1=N2       解得 

[例5]如图所示,滑块在恒定外力作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度.

解析:设圆周的半径为R,则在C点:mg=m   

离开C点,滑块做平抛运动,则2Rgt2/2   ②

vCtsAB    ③                

BC过程:  mvC2/2+2mgRmvB2/2  ④

AB运动过程:  vB2=2asAB  ⑤ 

由①②③④⑤式联立得到:  a=5g/4

例6、如图所示,M为悬挂在竖直平面内某一点的木质小球,悬线长为L,质量为m的子弹以水平速度V0射入球中而未射出,要使小球能在竖直平面内运动,且悬线不发生松驰,求子弹初速度V0应满足的条件。  分两种情况:

(1)若小球能做完整的圆周运动,则在最高点满足:

由机械能守定律得:

由以上各式解得:.

(2)若木球不能做完整的圆周运动,则上升的最大高度为L时满足:

     解得:.

所以,要使小球在竖直平面内做悬线不松驰的运动,V0应满足的条件是:

试题详情

2.处理方法:

一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。

做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:Fn=man在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用等各种形式)。

[例1] 如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高hA处静止开始下滑,沿轨道ABC运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的3/4,圆滑半径为R,斜面倾角为θsBC=2R。若使小球在圆环内能作完整的圆周运动,h至少为多少?

解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F,如图所示。可知F=1.25mg,方向与竖直方向左偏下37º,从图6中可知,能否作完整的圆周运动的临界点是能否通过D点,若恰好能通过D点,即达到D点时球与环的弹力恰好为零。

由圆周运动知识得:     即:

由动能定理:

联立①、②可求出此时的高度h

试题详情

1.向心力 (1)大小:

(2)方向:总指向圆心,时刻变化

试题详情

4、绳杆球

 这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。

①弹力只可能向下,如绳拉球。这种情况下有

,否则不能通过最高点。

②弹力只可能向上,如车过桥。在这种情况下有:,否则车将离开桥面,做平抛运动。

③弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v可以取任意值。但可以进一步讨论:①当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。②当弹力大小F<mg时,向心力有两解:mg±F;当弹力大小F>mg时,向心力只有一解:F +mg;当弹力F=mg时,向心力等于零。

试题详情

3、圆锥问题

              

例:小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。

高中物理吧() 全站免费免注册下载!欢迎访问!

由此可得:

试题详情

2、汽车过拱桥

         

    mg sinθ = f

 如果在最高点,那么

      此时汽车不平衡,mg≠N

    说明:F=mv2 / r同样适用于变速圆周运动,F和v具有瞬时意义,F随v的变化而变化。

   补充 :   (抛体运动)

试题详情

(临界或动态分析问题)

  提供的向心力   需要的向心力

        =     圆周运动

        >     近心运动

<     离心运动

=0    切线运动

1、火车转弯

如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供,v增加,外轨挤压,如果v减小,内轨挤压

问题:飞机转弯的向心力的来源

试题详情


同步练习册答案