5.(2008年海南理11)已知点P在抛物线上,那么点P到点的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )
A. B. C. D.
解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图
,故最小值在三点共线时取得,
此时的纵坐标都是,所以选A。(点坐标为)
4.(2009年天津理9)设抛物线=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的面积之比=
(A) (B) (C) (D)
[考点定位]本小题考查抛物线的性质、三点共线的坐标关系,和综合运算数学的能力,中档题。
解析:由题知,
又
由A、B、M三点共线有即,故,
∴,故选择A。
3.( 2010年辽宁理7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=
(A) (B)8 (C) (D) 16
[答案]B[解析]抛物线的焦点F(2,0),直线AF的方程为,所以点、,从而|PF|=6+2=8
2.(2010年福建理2)以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )
A. B. C. D.
[答案]D[解析]因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即,选D。
[命题意图]本题考查抛物线的几何性质以及圆的方程的求法,属基础题。
1.(2010年陕西理8).已知抛物线的准线与圆相切,则的值为 [ ]
[答案]C[解析]由题设知,直线与圆相切,从而.故选.
19、曙光公司为了打开某种新产品的销路,决定进行广告促销,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系式是Q=已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需投入32万元,若每件售价是“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,当年产销量相等试将年利润y(万元)表示为年广告费x万元的函数,并判断当年广告费投入100万元时,该公司是亏损还是盈利?
18、求函数的值域和单调区间
17、若,则,,由大到小的顺序是____________
16、若点既在函数的图象上,又在它的反函数的图象上,则=__________________,=__________________
15、函数与互为反函数的充要条件是___________
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com