2.(2009年广东理19)(本小题满分14分)
已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.
(1)若点是线段的中点,试求线段的中点的轨迹方程;
(2)若曲线与有公共点,试求的最小值.
解:(1)联立与得,则中点,设线段的中点坐标为,则,即,又点在曲线上,
∴化简可得,又点是上的任一点,且不与点和点重合,则,即,∴中点的轨迹方程为().
(2)曲线,即圆:,其圆心坐标为,半径由图可知,当时,曲线与点有公共点;当时,要使曲线与点有公共点,只需圆心到直线的距离,得,则的最小值为.
1.(2009年江苏22)(本题满分10分)
在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。
[解析] 本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。
7.(2007年广东理11)在直角坐标系xOy中,有一定点A(2,1)。若线段OA的垂直平分线过抛物线的焦点,则该抛物线的准线方程是______;
答案:;解析:OA的垂直平分线的方程是y-,令y=0得到x=;
6.(2007年山东理13)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为________.
[答案]: [分析]:过A 作轴于D,令,则,,。
5.(2009年福建理13)过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则________________
[答案]:2解析:由题意可知过焦点的直线方程为,联立有,又。
4.(2009年海南理13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________.
答案:y=x解析:抛物线的方程为 ,
3.(2010年上海理3) 动点到点的距离与它到直线的距离相等,则的轨迹方程为 。
解析:考查抛物线定义及标准方程
定义知的轨迹是以为焦点的抛物线,p=2所以其方程为y2=8x
2.(2010年浙江理13)设抛物线的焦点为,点.若线段的中点在抛物线上,则到该抛物线准线的距离为_____________。
解析:利用抛物线的定义结合题设条件可得出p的值为,B点坐标为()所以点B到抛物线准线的距离为,本题主要考察抛物线的定义及几何性质,属容易题
1.(2010年湖南理14)过抛物线的焦点作斜率为1的直线与该抛物线交于两点,在轴上的正射影分别为.若梯形的面积为,则 .
[答案]2
6.(2007年海南理6)已知抛物线的焦点为,点,在抛物线上,且, 则有( )
A. B.
C. D.
[答案]:C[分析]:由抛物线定义,即:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com