6.椭圆C与椭圆关于直线对称,椭圆C的方程是( )
A. B.
C. D.
5.抛物线关于直线对称的曲线方程是__________.
4.一动圆M与两定圆均外切,则动圆圆心M的轨迹方程是_______________.
3.方程化简的结果是( )
A. B. C. D.
2.点M为抛物线上的一个动点,连结原点O与动点M,以OM为边作一个正方形MNPO,则动点P的轨迹方程为( )
A. B. C. D.
例1用直接法:若曲线上的动点满足的条件是一些几何量的等量关系,则只需直接把这种关系“翻译”成关于动点的坐标的方程。经化简所得同解的最简方程,即为所求轨迹方程。其一般步骤为:建系--设点--列式--代换--化简--检验。
例2用圆锥曲线的定义求方程。如果题目中的几何条件能够满足圆、椭圆、双曲线,抛物线的第一、二定义,则直接利用曲线定义写出其轨迹方程。
例3求曲线的轨迹方程是解析几何的两个基本问题之一。求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为变量间的关系。在确定了轨迹方程之后,有时需要对方程中的参数进行讨论,因为参数取值的变化会使方程表示不同的曲线,会使其与其他曲线的位置关系不同,会引起另外某些变量取值范围的变化。
例4本题是运用参数法求的轨迹。当动点P的坐标之间的直接关系不易建立时,可适当地选取中间变量,并用表示动点P的坐标,从而得到动点轨迹的参数方程,消去参数,便可得到动点P的轨迹普通方程。其中应注意方程的等价性,即由的范围确定出范围。
冲刺强化训练(15)
1.若点M(x,y)满足,则点M的轨迹是( )
A.圆 B.椭圆 C.双曲线 D抛物线.
|
|
|
|
|
|
例2.如图,在中, 平方单位,动点P在曲线E上运动,若曲线E过点C且满足的值为常数。
(1) 求曲线E的方程;
(2)
|
|
|
|
|
|
例3.如图所示,过椭圆E:上任一点P,作右准线的垂线PH,垂足为H。延长PH到Q,使HQ=
(1)当P点在E上运动时,求点Q的轨迹G的方程;
(2)当取何值时,轨迹G是焦点在平行于轴的直线上的椭圆?证明这些焦点都在同一个椭圆上,并写出椭圆的方程;
(3)当取何值时,轨迹G是一个圆?判断这个圆与椭圆的右准线的位置关系。
|
|
|
|
|
|
|
例4.设椭圆方程为,过点的直线交椭圆于点A、B,O是坐标原点,点P满足点N的坐标为,当绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)的最小值与最大值。
4.在中,已知,且成等差数列,则C点轨迹方程为
3.已知点P是双曲线上任一点,过P作轴的垂线,垂足为Q,则PQ中点M的轨迹方程是
2.直线与椭圆交于P、Q两点,已知过定点(1,0),则弦PQ中点的轨迹方程是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com