0  360264  360272  360278  360282  360288  360290  360294  360300  360302  360308  360314  360318  360320  360324  360330  360332  360338  360342  360344  360348  360350  360354  360356  360358  360359  360360  360362  360363  360364  360366  360368  360372  360374  360378  360380  360384  360390  360392  360398  360402  360404  360408  360414  360420  360422  360428  360432  360434  360440  360444  360450  360458  447090 

4、教法特点及预期效果分析

数学是思维的科学,数学学习不是简单的“告诉”,而应是学生个性化的“体验”.

在本节课的学习中,采用问题引导、合作探究的教学方法,设计六大教学环节:展示成果话杨辉、感知规律悟性质、联系旧知探新知、合作交流议方法、反馈升华拨思路、悬念小结再求索.倡导自主探索、独立思考、动手实践、合作交流,为学生开展数学体验,丰富学习方式,形成积极主动的、多样的学习方式创造了有利的条件和广阔的空间.

在探究二项式系数的性质中,设计为探究“三部曲”:

第一步是数形结合、概括性质. 通过学生画出=6和=7时函数图象,并观察分析其对称性和增减性与最大值,引导学生概括性质,学生有目的地动手实践,亲身参与探究活动远比目睹幻灯播放更能体验数学蕴含的规律,使抽象的数学知识直观生成.

第二步是分组讨论、证明性质. 在学生初步认识“杨辉三角”包含的规律及“杨辉三角”与二项式系数的关系的基础上,在画出=6和=7时函数图象并观察分析其对称性和增减性与最大值的情境下,采取分组讨论、交流展示的学习方式,诱发学生内在的认知冲突,激发学生沉淀的知识,培养学生解决问题的能力,让知识经历一个再发现、再创造的过程,体验到探究过程中涉及的思维策略,促进学生对内容的深刻理解,把课堂教学的“话语权”、“生成权”、“展示权”、“交流权”交给学生,用学生的“亮点”,点亮学生的智慧.

第三步是师生合作、再探性质. 在探究各二项式系数的和的教学中,设计探究性的问题串,运用特殊到一般的归纳思想,猜想结论,再运用赋值法证明这一性质,培养学生思维的严谨性和深刻性,引导学生挖掘问题的本质特征,同时呈现用分类和分步计数原理说明的展开式的各二项式系数的和,引发学生的认知冲突,培养学生思维的灵活性和独创性,激发学生的探索兴趣.

学生经历课前初探、课中深探、变式细探的探究过程,对“杨辉三角”及二项式系数的性质有比较深刻的认识,不断提高学生探究和解决问题的能力,促进学生数学思维发展.

试题详情

4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.

试题详情

3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.

试题详情

2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.

试题详情

1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.

试题详情

2.教学目标分析

 “杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,了解我国古代数学成就之一的“杨辉三角”包含的规律,结合“杨辉三角”,运用函数的知识深化对二项式系数性质的理解,联系函数图象和性质、赋值法、两个计数原理等知识探究证明二项式系数的性质,体会用函数知识研究问题的方法,体验数形结合、特殊到一般进行归纳等数学思想的渗透和运用,体现教师引导、学生探究的教学方式,培养学生问题意识,提高数学思维能力,培育学生理性精神.

根据以上分析特制定教学目标如下:

试题详情

1.内容和内容解析

《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,

由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处. 这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解数学知识,培养其数学应用意识.

研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.

根据以上对教材及学情的分析,特制定教学重点如下:

体会用函数知识研究问题的方法,理解二项式系数的性质.

试题详情

教材的主干内容之一“杨辉三角”就蕴含较丰富的文化价值(包括数字演变),我国古代数学成就和爱国主义情结.教学过程中,由于提及到与“帕斯卡三角”的比照,涉及到与“斐波那契数列”的联系,学生的民族自豪感,爱国主义情操不时会写在那一张张稚嫩、率真的脸上,相信对他们的精神风貌是一种陶冶,思想品质是一种升华.

本节课值得改进的地方:

一是可考虑通过网上链接搜集一些“杨辉三角”包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,尽管课后通过师生沟通,形成了共识,但值得在以后的教学中更好地把握好教学细节.

试题详情

综观整节课三个性质的呈现(教师板书的主题)毫无生涩造作,支离隔阂的痕迹. 却是分块搭建,彼此衔接,宛若于活动中生成,从过程中体验,在操作中建构,水到渠成之感,这得益于教师充分挖掘和把握教材内在联系之功力和涵养,也借助于教师过渡衔接之妙:和蔼微笑的教态,激励动情的语言,豁达激情的风貌,使得课堂情境天人合一.

试题详情


同步练习册答案