0  360266  360274  360280  360284  360290  360292  360296  360302  360304  360310  360316  360320  360322  360326  360332  360334  360340  360344  360346  360350  360352  360356  360358  360360  360361  360362  360364  360365  360366  360368  360370  360374  360376  360380  360382  360386  360392  360394  360400  360404  360406  360410  360416  360422  360424  360430  360434  360436  360442  360446  360452  360460  447090 

3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;

试题详情

2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;

试题详情

1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;

试题详情

2.本课内容剖析

教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.

基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.

进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.

教学目的

试题详情

1.导数的地位、作用

导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.

试题详情

   “充分条件与必要条件”作为高中数学传统的重点内容,难点内容。我希望通过本节课的教学,让学生准确地理解这一概念,能简单的运用这一知识。并希望能够通过较为愉悦的课堂环境,使学生保持浓厚的学习兴趣,不要产生畏难情绪。课后,我将根据本节课实际教学过程中出现的问题,在下一课时的教学中作出调整和弥补,并在下一课时中,加强对学生运用知识解决问题环节的训练。

试题详情

3、教学层次鲜明、衔接自然

  我把整个教学过程划分为六个环节:复习引入、新知建构、巩固新知、能力提升、牛刀小试、课堂小结。以问题为主线,为了解决问题,学习新知识,掌握了新知识再来解决问题。这样就把几个环节很自然地联系在一起。

试题详情

2、注重对学生的思维训练

引导学生多角度的审视问题,从不同角度去看问题,分析问题,思考问题,从而可以使得对一个具体问题理解的更准确、更全面、更深刻。例如:在概念教学中,为了更好的理解概念,我通过具体问题引导学生从表达形式(符号表示与文字表示)、通俗语言的描述(有它就行和缺它不行)、不同概念间的联系(充分条件与必要条件和集合的关系)来辅助概念教学。

试题详情

1、体现了“师为主导,生为主体”的教学理念

本节课的教学设计和实际教学中,教师本人更多的是站在一个引路人的角度,告诉学生该向哪里走,怎么走,让他们自己去走。如:在例题的教学中,我大多是先带领学生分析问题,探求解决问题的方法,在学生通过自己的努力尝试解答之后,我再进行总结,避免了“满堂灌”。   

试题详情

2..学生学习本节课内容时不易理解的地方及我的处理方法

(1)“充分条件与必要条件”的概念是学生不易理解的。为了帮助学生更好地理解概念的实质,我通过复习旧知识(命题)引入新知识(充分条件和必要条件),并在前三个较为简单的例题的讲解过程中逐步渗透“充分条件与必要条件”的实质。

(2)利用“充分条件与必要条件”解决问题是学生难于掌握的,这也不是本节课可以彻底解决的问题。所以,我引导学生通过解决简单问题(例1、例2、例3),提炼出解决问题的方法,再尝试运用方法解决新问题(例4、例5)。首先让学生掌握解决问题的方法,再加以运用,这样我也可以搞清学生“会了什么”、“还有什么不会”,使后面的教学更有针对性。

(3)例5的教学是存在困难的,问题的难度主要在于问题本身是一个开放式的填空题。所以,我要先让学生通过观察对比几个例题的问法,找出问题问法的变化,然后使用已经总结出的方法,尝试解决这一问题。

正因为有以上两大方面的原因,因此本节课教学时注重从学生熟悉的数学问题入手,从学生熟悉的生活实例入手;同时,也要求本节课对概念的教学、理解要更加深入、更加理性。

试题详情


同步练习册答案