0  360682  360690  360696  360700  360706  360708  360712  360718  360720  360726  360732  360736  360738  360742  360748  360750  360756  360760  360762  360766  360768  360772  360774  360776  360777  360778  360780  360781  360782  360784  360786  360790  360792  360796  360798  360802  360808  360810  360816  360820  360822  360826  360832  360838  360840  360846  360850  360852  360858  360862  360868  360876  447090 

2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点么?

试题详情

1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点么?

试题详情

[环节一:揭示意义,明确目标]揭示本章意义,指明课节目标

教师活动:用屏幕显示第三章  函数的应用

3.1.1方程的根与函数的零点

教师活动:这节课我们来学习第三章函数的应用。通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题。为此,我们还要做一些基本的知识储备。方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”。

教师活动:板书标题(方程的根与函数的零点)。

[环节二:巧设疑云,轻松渗透]设置问题情境,渗透数学思想

教师活动:请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?

(1);(2).

学生活动:回答,思考解法。

教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?

学生活动:思考作答。

教师活动:用屏幕显示函数的图象。

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。用屏幕显示表格,让学生填写的实数根和函数图象与x轴的交点。

学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。

教师活动:我们就把使方程成立的实数x称做函数的零点.

[环节三:形成概念,升华认知]引入零点定义,确认等价关系

教师活动:这是我们本节课的第一个知识点。板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点)。

教师活动:我可不可以这样认为,零点就是使函数值为0的点?

学生活动:对比定义,思考作答。

教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?

学生活动:思考作答。

教师活动:这是我们本节课的第二个知识点。板书(方程的根与函数零点的等价关系)。

教师活动:检验一下看大家是否真正理解了这种关系。如果已知函数y=f(x)有零点,你怎样理解它?

学生活动:思考作答。

教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点。从我们刚才的探究过程中,我们知道,方程f(x)=0有实根和图象与x轴有交点也是等价的关系。所以函数零点实际上是方程f(x)=0有实根和图象与x轴有交点的一个统一体。

在屏幕上显示:函数y=f(x)有零点

       

方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点

教师活动:下面就检验一下大家的实际应用能力。

[环节四:应用思想,小试牛刀]数学思想应用,基础知识强化

教师活动:用屏幕显示求下列函数的零点.

学生活动:由四位同学分别回答他们确定零点的方法。画图象时要求用语言描述4个图象的画法;

教师活动:根据学生的描述,在黑板上作出图象(在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考)。

教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我们也有了一些收获,那我们回过头来看看能不能解决的根的存在性问题?

学生活动:可受到化归思想的启发应用数形结合进行求解。

教师活动:用屏幕显示学生所论述的解题过程。这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点解决实根存在性问题。看来我们的探究过程是非常有价值的。

教师活动:如果不转化,这个问题就真的解决不了么?现在最棘手的问题是y=的图象不会画,那我们能不能不画图象就判断出零点的存在呢?

[环节五:探究新知,思形想数]探究图象本质,数形转化解疑

教师活动:我们看到,当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示的函数图象,多次播放抛物线穿过x轴的画面。

学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论.

教师活动:好!我们明确一下这个结论,函数y=f(x)具备什么条件时,能在区间(a,b)上存在零点?

学生活动:得出f(a)·f(b)<0的结论。

教师活动:若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?

学生活动:可从黑板上的图象中受到启发,得出只有在[a,b]上连续不断的函数,在满足f(a)·f(b)<0的条件时,才会存在零点的结论。

[环节六:归纳定理,深刻理解]初识定理表象,深入理解实质

教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理。这是我们本节课的第三个知识点。板书(三、零点存在性定理)。

教师活动:用屏幕显示函数零点存在性定理:

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a) ·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点.

      即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

教师活动:这个定理比较长,找个同学给大家读一下,让大家更好地体会定理的内容。

学生活动:读出定理。

教师活动:大家注意到了么,定理中,开始时是在闭区间[a,b]上连续,结果推出时却是在开区间(a,b)上存在零点。你怎样理解这种差异?

学生活动:思考作答。

教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然么?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问?

学生活动:通过观察黑板上的板书图象,大致说出以下问题:

试题详情

授课类型:新 授 课
教学方法:启发式教学、探究式学习
教学课件:自制Powerpoint课件
多媒体设备:计算机

试题详情

教学重点
零点的概念及零点存在性的判定。
教学难点
探究判断函数的零点个数和所在区间的方法.

试题详情

 
 
知识与技能
1.结合方程根的几何意义,理解函数零点的定义;
2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.
 
 
 
过程与方法
1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;
2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;
3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;
4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。
 
 
情感、态度与价值观
1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3.使学生感受学习、探索发现的乐趣与成功感。

试题详情

本节课所学内容:

三种类型的比大小及各自的方法:

本节课所用到的数学思想和方法:

思考题:(2009全国II 7)

   则(    )

A、a>b>c  B、a>c>b  C、b>a>c  D、b>c>a

通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法
 
此类型比大小是课本以外知识,需经过学生利用已学知识、已有经验(指数比大小中积累),结合合作探究的学习方式找到解题方法
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
以学生自己总结教师引导的形式,进行课堂小结,巩固本节课的教学目标。
五、作业
P94  习题2.8  3
补充:比较下列各组数中两个值的大小
(1)  log0.62   log0.61.9   (2)  loga3   loga    (a>0,a≠1)
 (3)  log510   log310    (4)  log0.12   log32
(5)  log23   log32     (6)  logab   logba  (b>a>1)
课前预习:
复习:1、复合函数的单调性
      2、反函数的求解步骤  
 
板  书  设  计
          对数函数(二)----比大小
一、    同底对数比大小             
方法:函数单调性                  例题
二、既不同底数,也不同真数的对数比大小          练习
   方法:找中间量
三、同真数的对数比大小
   方法:换底公式或图像
教学流程图

 


 
否ou
 
作业
 
小结
 
出示练习题目
 
小组讨论解决方案
 
 
合作探究
 
出示练习题目
 

试题详情

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

试题详情

7、   作业

包括两个方面:1、书写作业  2、下节课前的预习作业

试题详情

6、   思考题

以2009高考题为例,让学生学以致用,增强数学学习兴趣。

试题详情


同步练习册答案