216.在正方体木块ABCD-A1B1C1D1的表面上有一动点P由顶点A出发按下列规则向点C1移动; ⑴点P只能沿着正方体木块的棱或表面对角线移动; ⑵点P每一变化位置,都使P点到C1点的距离缩短。 动点P共有_________种不同的运行路线。 解析:通过画图逐一计数,共得12种不同路线(从B到C1,就有3种不同路线)
经过一条边,一条对角线的情况有6种, ,,
,,
经过三条边的情况有6种:
,,
,,
215. 如图2-22:在长方体AC1中, (1)求证:BC1//平行平面AB1D1 (2)若E、F分别是D1C,BD的中点,则EF//ADD1A1 解析:(1)∵D1C1DCAB ∴ABC1D1是平行四边形 BC1//AD1 又BC1平面AB1D1,又AD1平面AB1D1
BC1//平面AB1D1 (2)证明:连结AF、CF、AD1, ∵ABCD是正方形,且F是BD的中点,知A、F、C三点共线, 且F是AC的中点,又E是CD1的中点 ∴EF//AD,又EF平面ADD1A1,AD平面ADD1A1, ∴EF//平面ADD1A1
214. 直线a//直线b,直线a与平面α相交,判定直线b与平面α的位置关系,并证明你的结论
证明:假设直线b与α不相交,则bα或b//α (1)若bα,由a//b,bα,aαa//α,与a与平面α相交矛盾,故bα不可能。 (2)若b//α,又a// b,a,b可以确定平面β,设α∩β=c,由cα,知b与c没有公共点,又b、c同在平面β内,故b//c,又a//b,故a//c,cα,aαa//α,这与a与平面α相交矛盾。故b不平行α。 综上所述,b与α必相交。
212.如图2-20,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN//平面BCE。
解析: 要证MN//平面BCE,就是要在平面BCE上找一条直线,证明它与MN平行即可。
证明: 连结AN并延长,交BE延长张于G,连结CG。 由AF//BG,知,故MN//CG,MN平面BCE,CG平面BCE,于是MN//平面BCE。
点评:证线面平行,通常转化为证线线平行,关键是在平面内找到所需的线。 213. 如图2-21,正方体ABCD-A1B1C1D1的棱长为2,E为DD1的中点, (1)判断BD1和过A、C、E三点的平面的位置关系, 并证明你的结论。 (2)求ACE的面积。 证明(1):连结BD,令BD∩AC=F。 ∵BD1和过A、C、E三点的平面平行, 则F是DB的中点,又E是DD1的中点, ∴EF∥BD1 又EF平面ACE,BD1平面ACE, ∴BD1∥平面ACE (2)在正方形ABCD中,AB=2,AC=2,∴AF= 在直角△ADE中,AD=2,DE=1,∴AE=
在Rt△EAF中,EF=== ∴
211. 下列说法中正确的是( ): A. 直线l平行于平面α内的无数条直线,则l//α B. 若直线a在平面α外,则a//α C. 若直线a//b,直线bα,则a//α D. 若直线a//b,bα,那么a就平行于平面α内的无数条直线
解析:画出图形,根据直线与平面平行的定义和判定定理进行分析。
解答: 由直线l 虽与平面α内无数条直线平行,但l有可能在平面α内,知l不一定平行于α,从而排除A 直线a在平面α外,包括两种情况:a//α或a与α相交,故a与α不一定平行,从而排除B 直线a//b ,bα只能说明a和b无公共点,但a可能在平面α内,故a不一定平行于α,从而排除C a//b,bα,那么aα或a//α,故a可能与平面α内的无数条直线平行,从而选择D
点评: 判定直线与平面平行时,要注意直线与平面平行的判定定理中的三个条件,缺一不可。 。
21.(本小题满分13分)
已知椭圆的离心率为,其左、右焦点分别为F1、F2,点P是坐标平面内一点,且(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点且斜率为的动直线交椭圆于A、B两点,在轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标和面积的最大值;若不存在,说明理由。
20.(本小题满分13分)
已知数列满足,点在直线上,数列满足
(1)求的值;
(2)求证:
19.(本小题满分13分)
张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:)
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
18.(本小题满分12分)
下图分别为三棱锥S-ABC的直观图与三视图,在直观图中,,M、N分别为AB、SB的中点。
(1)求证:;
(2)求二面角M-NC-B的余弦值。
17.(本小题满分12分)
“上海世博会”于2010年5月1日至10月31日在上海举行,世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄,海纳百川的重要文化载体,为此,上海世博会事物协调局举办“中国2010年上海世博会”中国馆·贵宾厅艺术品方案征集活动,某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应证,假设代表中有中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为。
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求的数学期望。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com