1.光纤通信70年代后期发展起来的一种新型通信技术,目前长距离光纤通信系统已投入使用,光纤通信的光学纤维是由下列哪种物质经特殊工艺制成 ( )
A. 碳 B. 石英 C. 锗 D. 硅
250. 分别和两条异面直线都相交的两条直线的位置关系是( )
A.平行 B.异面 C.平行或异面 D.相交或异面
解析:本题考查两条直线的位置关系,异面直线的概念,以及空间想象能力.
解法一:设两条异面直线分别为l1,l2,则与它们分别相交的两条直线有可能相交,如图1,也可能异面,如图2,它们不可能平行,这是由于:假设这两条直线平行,则它们确定一个平面α,两条平行线与两条异面直线l1与l2的四个交点均在α内,则两异面直线l1与l2也在α内,这是不可能的.∴应选D.
解法二:利用排除法,容易发现,分别和两条异面直线都相交的两条直线可以是相交的位置关系,由于这点可以排除选择选A、B、C.故选D.
249. 如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有( )
A.12对 B.24对 C.36对 D.48对
解析:本题以六棱锥为依托,考查异面直线的概念及判断,以及空间想象能力.
解法一:如图,任何两条侧棱不成异面直线,任何两条底面上的棱也不成异面直线,所以,每对异面直线必然其中一条是侧棱而另一条为底面的棱,每条侧棱,可以且只有与4条底面上的棱组成4对异面直线,又由共6条侧棱,所以异面直线共6×4=24对.
解法二:六棱锥的棱所在12条直线中,能成异面直线对的两条直线,必定一条在底面的平面内,另一条是侧棱所在直线.底面棱所在直线共6条,侧棱所在直线也有6条,各取一条配成一对,共6×6=36对,因为,每条侧棱所在的直线,与底面内的6条直线有公共点的都是2条,所以,在36对中不成异面直线的共有6×2=12对.所以,六棱锥棱所在的12条直线中,异面直线共有36-12=24对.
248. 已知:A1、B1、C1和A2、B2、C2分别是两条异面直线l1和l2上的任意三点,M、N、R、T分别是A1A2、B1A2、B1B2、C1C2的中点.求证:M、N、R、T四点共面.
证明 如图,连结MN、NR,则MN∥l1,NR∥l2,且M、N、R不在同一直线上(否则,根据三线平行公理,知l1∥l2与条件矛盾).∴ MN、NR可确定平面β,连结B1C2,取其中点S.连RS、ST,则RS∥l2,又RN∥l2,∴ N、R、S三点共线.即有S∈β,又ST∥l1,MN∥l1,∴MN∥ST,又S∈β,∴ STβ.
∴ M、N、R、T四点共面. =2:1
又是正三角形的BD边上的高和中线,∴点G是正三角形的中心.故,即。
证明二:由(I)知,,,
当时,平行六面体的六个面是全等的菱形.同的证法可得, 又,所以。
247.设相交于G.,,且,所以如图,已知正方体ABCD-A1B1C1D1的棱长为a,求异面直线A1C1与BD1的距离.
解析:本题的关键是画出A1C1与BD1的公垂线,连B1D1交A1C1于O,在平面BB1D1内作OM⊥BD1,则OM就是A1C1与BD1的公垂线,问题得到解决.
解 连B1D1交A1C1于O,作OM⊥BD1于M.
∴ A1C1⊥B1D1,BB1⊥A1C1,BB1∩B1D1=B1.
∴ A1C1⊥平面BB1D1. ∴ A1C1⊥OM,又OM⊥BD1.
∴ OM是异面直线A1C1与BD1的公垂线.
在直角ΔBB1D1中作B1N⊥BD1于N.
∵ BB1·B1D1=B1N·BD1,a·a=B1N·a,
∴ B1N=a,OM=B1N=a.
故异面直线A1C1与BD1的距离为a.
评析:作异面直线的公垂线一般是比较困难的,只有熟练地掌握线、线垂直,线、面垂直的关系后才能根据题目所给条件灵活作出.本题在求OM的长度时,主要运用中位线和面积的等量关系.
246.如图,已知平行六面体的底面ABCD是菱形,且,(1)证明: ;
(II)假定CD=2,,记面为α,面CBD为β,求二面角α -BD -β的平面角的余弦值;
(III)当的值为多少时,能使?请给出证明. 解析:(I)证明:连结、AC,AC和BD交于.,连结, ∵四边形ABCD是菱形,∴AC⊥BD,BC=CD, 可证,,
故,但AC⊥BD,所以,从而;
(II)解:由(I)知AC⊥BD,,是二面角α-BD-β的平面角,在中,BC=2,,, ∵∠OCB=60°,,,故C1O=,即C1O=C1C,作,垂足为H,∴点H是.C的中点,且,所以;
(III)当时,能使
证明一:∵,所以,又,由此可得,∴三棱锥是正三棱锥.,
245.已知正四棱柱ABCD-A1B1C1D1中,点P是DD1的中点,且截面EAC与底面ABCD成450角,AA1=2a,AB=a,(1)设Q是BB1上一点,且BQa,求证:DQ面EAC;(2)判断BP与面EAC是否平行,并说明理由?(3)若点M在侧面BB1C1C及其边界上运动,并且总保持AMBP,试确定动点M所在的位置。
解析:(1)证:首先易证ACDQ,再证EODQ(O为AC与BD的交点)在矩形BDD1B1中,可证EDO与BDQ都是直角三角形,由此易证EODQ,故DQ面EAC得证;
(2)若BP与面EAC平行,则可得BP//EO,在三角形BPD中,O是BD中点,则E也应是PD中点,但PD=DD1=a,而ED=DO=BD=a,故E不是PD中点,因此BP与面EAC不平行;
(3)易知,BPAC,要使AMBP,则M一定在与BP垂直的平面上,取BB1中点N,易证BP面NAC,故M应在线段NC上。
244.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=x ,BN=y, (1)求MN的长(用x,y表示);(2)求MN长的最小值,该最小值是否是异面直线AC,BF之间的距离。
解析:在面ABCD中作MPAB于P,连PN,则MP面ABEF,所以MPPN,PB=1-AP=在PBN中,由余弦定理得:PN2=
,在中,MN=
;
(2)MN,故当,时,MN有最小值。且该最小值是异面直线AC,BF之间的距离。
243. 如图,边长均为a的正方形ABCD、ABEF所在的平面所成的角为。点M在AC上,点N在BF上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MNAB;
(3)求MN的最小值.
解析:(1)如图,作MG//AB交BC于G, NH//AB交BE于H, MP//BC交AB于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH为平行四边形,所以MN//GH , 故MN//面BCE ;
(2)易证AB面MNP, 故MNAB ;
(3)即为面ABCD与ABEF所成二面角的平面角,即,设AP=x , 则BP=a-x , NP=a-x , 所以:
,
故当时,MN有最小值.
242.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=(1)求MN的长;
(2)当为何值时,MN的长最小; (3)当MN长最小时,求面MNA与面MNB所成的二面角的大小。
解析:(1)作MP∥AB交BC于点P,NQ∥AB交BE于点Q,连接PQ,依题意可得MP∥NQ,且MP=NQ,即MNQP是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,
∴,, 即,
∴
(2)由(1)知: ,
(3)取MN的中点G,连接AG、BG,∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,
∴∠AGB即为二面角α的平面角。又,所以由余弦定理有
。故所求二面角。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com