5.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量
1°e×a = a×e =|a|cosq
2°a^b Û a×b = 0
3°当a与b同向时,a×b = |a||b|;当a与b反向时,a×b = -|a||b|
特别的a×a = |a|2或
4°cosq =
5°|a×b| ≤ |a||b|
4.向量的数量积的几何意义:
数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积
3.“投影”的概念:作图
定义:|b|cosq叫做向量b在a方向上的投影
投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0°时投影为 |b|;当q = 180°时投影为 -|b|
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,
(0≤θ≤π)并规定0与任何向量的数量积为0
×探究:两个向量的数量积与向量同实数积有很大区别
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替
(3)在实数中,若a¹0,且a×b=0,则b=0;但是在数量积中,若a¹0,且a×b=0,不能推出b=0因为其中cosq有可能为0
(4)已知实数a、b、c(b¹0),则ab=bc Þ a=c但是a×b = b×c a = c
如右图:a×b = |a||b|cosb = |b||OA|,b×c = |b||c|cosa = |b||OA|
Þ a×b = b×c 但a ¹ c
(5)在实数中,有(a×b)c = a(b×c),但是(a×b)c ¹ a(b×c)
显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线
1.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角
说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;
(3)当θ=时,a与b垂直,记a⊥b;
(4)注意在两向量的夹角定义,两向量必须是同起点的范围0°≤q≤180°
|
10.力做的功:W = |F|×|s|cosq,q是F与s的夹角
6.线段的定比分点及λ
P1, P2是直线l上的两点,P是l上不同于P1, P2的任一点,存在实数λ,
使 =λ,λ叫做点P分所成的比,有三种情况:
λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)
7定比分点坐标公式:
若点P1(x1,y1) ,P2(x2,y2),λ为实数,且=λ,则点P的坐标为(),我们称λ为点P分所成的比
8点P的位置与λ的范围的关系:
①当λ>0时,与同向共线,这时称点P为的内分点
②当λ<0()时,与反向共线,这时称点P为的外分点
9线段定比分点坐标公式的向量形式:
在平面内任取一点O,设=a,=b,
可得=
5.∥ (¹)的充要条件是x1y2-x2y1=0
4.平面向量的坐标运算
若,,
则,,
若,,则
3.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com