0  368136  368144  368150  368154  368160  368162  368166  368172  368174  368180  368186  368190  368192  368196  368202  368204  368210  368214  368216  368220  368222  368226  368228  368230  368231  368232  368234  368235  368236  368238  368240  368244  368246  368250  368252  368256  368262  368264  368270  368274  368276  368280  368286  368292  368294  368300  368304  368306  368312  368316  368322  368330  447090 

26. “If" he added, “________ to carry out the plan, we would surely make a big profit for our company."

    A.to permit       B.to be permitted                  C.permitting     D.permitted

答案为:D. 此题考察状语从句的省略问题。补充完整为: “If we were permitted to carry out the plan,…”

试题详情

25. Between the two periods of classes is a break,     we can have a short rest.

    A.then          B.where         C.when          D.which

答案为:C. 此题考察非限制性定语从句。引导词在从句中做时间状语,意义上代替:a break.

试题详情

24.---The research on the new bird flu virus vaccine is challenging and demanding. Who do you think can do the job?        

---____ my students have a try? A. May              B. Must                C. Will         D. Shall

答案为:D. 此题考察情态动词shall. Shall 用于第三人称,表示征求对方意见。

试题详情

23. With all the novels he was interested in _______, he left the library and went back to his dorm.

    A. borrowed  B. borrowing     C. to borrow  D. borrow

答案为:A.  此题考察:with + o. + O.c. ; 过去分词做宾补,表被动。意思是:所有他感兴趣的小说都被借了。

试题详情

22. A series of stimulus policies and supportive measures taken by the government _____ to promote change in the economic environment in this area.

A. are expecting   B. are expected   C. is expecting    D. is expected

答案为:D. 此题考察主谓一致和被动语态。主语是单位词:a series of…。谓语用单数。根据句意要用被动。

试题详情

21.---Where did you come across our chemistry teacher ?

    --- It was in the supermarket ______I purchased mooncakes.

    A.that     B.which         C.where    D.when

答案为: C.  这是一个省略了的强调句。完整句子是:It was in the supermarket that I purchased mooncakes that I came across our chemistry teacher. 要填的词是强调部分所带定语从句的引导词。

试题详情

22.(14分)(2009·南昌调研)设f(x)的定义域为(0,+∞),对于任意正实数mn恒有f(m·n)=f(m)+f(n)且当x>1时,f(x)>0,f()=-1.

(1)求f(2)的值;

(2)求证:f(x)在(0,+∞)上是增函数;

(3)解关于x的不等式f(x)≥2+f(),其中p>-1.

解:(1)令mn=1得:f(1)=2f(1),∴f(1)=0.

f(1)=f(2·)=f(2)+f()=f(2)-1=0,

f(2)=1.

(2)设0<x1<x2,则>1,由已知得f()>0.

f(1)=f(x1·)=f(x1)+f()=0,

f()=-f(x1).

f()=f(x2)+f(),∴f()=f(x2)-f(x1),

f()>0得f(x2)-f(x1)>0,f(x2)>f(x1),

f(x)在(0,+∞)上是增函数.

(3)由f(2)=1得,2=f(2)+f(2)=f(4),又f(x)≥2+f(),∴不等式化为f(x)≥f(),由(2)已证f(x)在区间(0,+∞)上是增函数可得:,

①当p>0时,由>0得x>4,

∴不等式x≥可化为x2-4x-4p≥0.

这时,Δ=16+16p>0,不等式x2-4x-4p≥0的解为x≥2+2或x≤2-2.

x>4,∴不等式组的解为x≥2+2.

②当p=0时,不等式>0不成立,

∴不等式组的解集为Ø.

③当即-1<p<0时,由>0得x<4,

∴不等式x≥可化为x2-4x-4p≤0.

不等式组的解为2-2≤x≤2+2.

综上可得:

p>0时,原不等式的解集是{x|x≥2+2},

p=0时,原不等式的解集是Ø

当-1<p<0时,原不等式的解集是{x|2-2≤x≤2+2}.

试题详情

21.(12分)(2010·黄冈检测)设函数fn(x)=1+x-+-…+,n∈N*.

(1)讨论函数f2(x)的单调性;

(2)判断方程fn(x)=0的实数解的个数,并加以证明.

解:(1)f2(x)=1+x-+,f2′(x)=1-x+x2=(x-)2+>0,故f2(x)在(-∞,+∞)上单调递增.

(2)f1(x)=1+x,故f1(x)=0有实数解x=-1;

f2(0)=1>0,f2(-1)=-+<0,

f2(x)在(-∞,+∞)上单调递增,

f2(x)=0在(-1,0)上有唯一实数解,从而f2(x)=0在(-∞,+∞)上有唯一实数解.

由此猜测fn(x)=0在(-∞,+∞)上有唯一实数解,证明如下:

n≥2时,由fn(x)=1+x-+-…+,

fn′(x)=1-x+x2-…-x2n3+x2n2.

x=-1,则fn′(-1)=2n-1>0;若x=0,则fn′(0)=1>0.

x≠0且x≠-1时,fn′(x)=,

x<-1时,x+1<0,x2n1+1<0,fn′(x)>0,

x>-1时且x≠0,x+1>0,x2n1+1>0,fn′(x)>0.

总之,fn′(x)>0,故fn(x)在(-∞,+∞)上单调递增.

fn(0)=1>0,fn(-1)=1-1---…--<0,所以当n≥2时,fn(x)=0在(-1,0)上有唯一实数解,从而fn(x)=0在(-∞,+∞)上有唯一实数解.

综上可知,fn(x)=0在(-∞,+∞)上有唯一实数解.

试题详情

20.(12分)(2010·黄冈质检)某公司用480万元购得某种产品的生产技术后,再次投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元,经过市场调研发现:该产品的销售单价定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上,每增加10元,年销售量将再减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).

(1)直接写出yx之间的函数关系式;

(2)求第一年的年获利wx之间的函数关系式,并说明投资的第一年,该公司是赢利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损是多少?(=1521)

解:(1)y=.

(2)当100≤x≤200时,wxy-40y-(480+1520)

y=-x+28代入上式得:

wx(-x+28)-40(-x+28)-2000=-(x-195)2-78,

当200<x≤300时,同理可得:w=-(x-180)2-40,

w=.

若100≤x≤200,当x=195时,wmax=-78,

若200<x≤300,wmax=-80.

故投资的第一年公司是亏损的,最少亏损为78万元.

试题详情

19.(12分)已知f(x)是定义在R上的函数,对于任意的实数ab,都有f(ab)=af(b)+bf(a),且f(2)=1.

(1)求f的值;

(2)求f(2n)的解析式(n∈N*).

解:(1)令ab=1,则f(1)=1×f(1)+1×f(1)=2f(1),从而f(1)=0.由f(1)=ff(2)+2f=0,可得f=-f(2)=-;

(2)f(2n)=f(2×2n1)=2f(2n1)+2n1f(2)=2f(2n1)+2n1.设bnf(2n),则bn=2bn+1+2n1.两边同乘以2n,可以得到2nbn=2n+1bn+1+,即2n+1bn+1-2nbn=-.故数列{2nbn}为公差为-的等差数列.由2b1=2f=-,可得2nbn=-+(n-1)=-,所以bn=-,即f(2n)=-.

试题详情


同步练习册答案