6.(本小题满分12分)
如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点
(Ⅰ)求边所在直线方程;
(Ⅱ)为直角三角形外接圆的圆心,求圆的方程;
(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.
华侨中学2010届高三解答题限时训练3答案
5.如图,已知长方体底面为正方形,为线段的中点,为线段的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)设的中点,当的比值为多少时,并说明理由.
4.
4(本小题满分14分)已知函数
(1)当时,若函数的定义域是R,求实数的取值范围;
(2)试判断当时,函数在内是否存在零点.
3.
33 (本小题满分14分) 设向量,
记,是的导函数.
(I)求函数的最大值和最小正周期;
(II)若,求的值.
2.(本小题满分12分)在等差数列中,设
为它的前项和,若且点与都在斜率为-2的直线上,
(Ⅰ)求的取值范围;
(Ⅱ)指出中哪个值最大,并说明理由.
1.(本小题满分12分)
已知全集
集合,,,若,求实数的取值范围.
21. 解(1)证: 由 得…………2分
在上点处的切线为,即 …………3分
又在上点处切线可计算得,即
∴直线与、都相切,且切于同一点() …………………4分
(2)
…………………6分
∴在上递增
∴当时……………8分
(3)
设上式为 ,假设取正实数,则·
当时,,递减;
当,,递增. ……………………………………12分
∴不存在正整数,使得
即 …………………………………………14分
12分
6.(本题满分14分)
5.解证:(I)易得…………………………………………1分
的两个极值点的两个实根,又a>0
……………………………………………………3分
∴∵
……7分
(Ⅱ)设则
由
上单调递增………………10分
………………………………………………12分
4.解证:(Ⅰ)由题意知Sn=2an-3n
∴………………2分
∴a1+3=6……………4分
∴数列{an+3}成以6为首项以2为公比的等比数列
(Ⅱ)由(I)得(Ⅲ)设存在s、p、r∈N*且s<p<r使as,ap,ar成等差数列∴2ap=as+ar∴………………9分
即(*)∵s、p、r∈N*且s<p<r
∴为奇数∴(*)为矛盾等式,不成立故这样的三项不存在。…12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com