0  368362  368370  368376  368380  368386  368388  368392  368398  368400  368406  368412  368416  368418  368422  368428  368430  368436  368440  368442  368446  368448  368452  368454  368456  368457  368458  368460  368461  368462  368464  368466  368470  368472  368476  368478  368482  368488  368490  368496  368500  368502  368506  368512  368518  368520  368526  368530  368532  368538  368542  368548  368556  447090 

4、采用不同的溶剂可改变反应速率

研究溶液中反应要考虑溶剂分子所起的物理的或化学的影响。溶剂的极性对反应速率存在影响。如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小。如甲醇羰基化反应,在非极性溶剂中、介电常数较小的溶剂能增加反应速率;另如CH3COCl与苯酚反应当以硝基苯为溶剂时主要产品为对位,当以CS2为溶剂时主要产品为邻位。CH3CH2Cl在NaOH水溶液中发生水解反应,在NaOH醇溶液中发生消去反应。

试题详情

3、电化学原理增大反应速率

在相同条件下,电化学反应比化学反应的反应速率快得多。如粗锌跟盐酸反应速率比纯锌快,这是由于粗锌中杂质与Zn构成原电池加快反应速率,不纯金属易被腐蚀原因也由于杂质(C)与金属(Fe)构成原电池。利用电化学原理也可使几乎不发生反应能进行反应,如铜与盐酸反应,可设计成原电池,也可设计成电解池。另如在水中加入强酸或强碱都可使电解水的速率加快。人们可利用电化学原理增大有利的化学反应速率,也可利用电化学原理减弱有害的化学反应速率,如牺牲阳极保护金属法。

试题详情

2、加大光照强度提高反应速率

氯水、AgBr、HClO、浓HNO3等见光分解加快,强光照射H2与Cl2混合气体、甲烷与Cl2混合气体易发生爆炸等。光照还是光化学烟雾形成的主要原因,光化学烟雾是氮氧化物和碳氢化合物(CXHY)在大气环境中受强烈的太阳紫外线照射后产生一种新的二次污染物。

试题详情

1、增大表面积可提高反应速率

一定量的固体,其颗粒越小,表面积越大,反应中碰撞的机会越多,反应越快。如燃煤时将大块的煤粉碎后再燃烧可以使煤燃烧得更快、更充分;将硫铁矿粉末高温燃烧;铜丝与硫粉加热反应;与盐酸反应时,大理石粉比大理石块的反应更剧烈;面粉厂车间遇火种易发生爆炸等。

试题详情

2.活性中心吸附论

合成氨中铁做催化剂时,铁在适当温度,例如500℃-550℃时做为活性中心,吸附氮分子,使氮分子的化学键变弱,进而使化学键破裂而离解为氮原子。气体氢分子与铁表面吸附的氮原子作用,逐步反应形成氨,可表示为:

上述反应过程需要的活化能降低了,使活化分子百分数增高,因而反应速率大大增加。

 在有气体参加的反应中,使用催化剂,由于催化剂中心的吸附产生中间产物,并使反应物在活性中心周围的浓度增大,活化分子增多,有效碰撞机会增大,从而使反应速率增大。以上两个学说是与有效碰撞理论有关的。

试题详情

1.中间产物论

例如:二氧化锰催化氯酸钾的分解反应,二氧化锰亦参加了化学反应,形成了中间产物。

首先是氯酸钾和二氧化锰生成高锰酸钾、氯气和氧气:

2KClO3+2MnO2====2KMnO4+Cl2+O2

高锰酸钾进一步分解:

2KMnO4====K2MnO4+MnO2+O2

形成的锰酸钾与氯气反应:

K2MnO4+Cl2====2KCl+MnO2+O2

总起来为:

由于二氧化锰参加反应,使得活化能降低,从而大大加快反应速率。

这一理论对实验室制氧气时产生的现象能很好地解释。例如制造出的氧气有氯气的味道。最后剩余产物溶于水后的溶液呈淡紫色。说明中间产生氯气和高锰酸钾有一定的道理。

试题详情

据研究,在一定温度下,气体分子具有一定的平均能量,但不是所有分子都具有这样大的能量的,有的分子能量高些,有的分子能量低些。只有极少数具有能量比平均值高得多的分子,它们才能发生有效的碰撞;也就是说,碰撞后才能引起反应,这样的分子叫做活化分子。活化分子具有的最低能量,与同温度下分子的平均能量之差叫做活化能,这是反应物分子在一定条件下进行反应,所必须具备的能量。不同的反应,具有不同的活化能,反应的活化能越低,活化分子的百分数就越大,反应就越快。活化能的单位通常是kJ/mol。例如,实验测得:

 2SO2+O2=2SO3反应的活化能为209kJ/mol

 2N2O5=4NO2+O2反应的活化能为100.32kJ/mol

活化分子和活化能的概念,可用来解释浓度、温度等因素对反应速率的影响。对某一反应来说,在一定温度下,活化分子在反应物分子中所占的百分数是一定的。因此,单位体积内活化分子的数目,是和单位体积内反应物分子的总数成正比,也就是和反应物的浓度成正比。显然,当反应物的浓度增大时,单位体积内活化分子的数目也相应地增多,这样也就增加了单位时间内有效碰撞的次数,因此反应速率加快。另外,如果升高反应温度,则分子运动加快,从而增加了单位时间内分子间的碰撞次数;更重要的是由于一些分子获得了能量,增加了活化分子的百分数,因而加快了反应速率。

至于催化剂加快反应速率的原因,乃是由于降低了反应的活化能,增加了活化分子的百分数的缘故。

试题详情

4、影响化学平衡的条件:

化学平衡状态是与外界条件有关的。外界某种条件改变时,使正、逆反应速率不等,平

衡混合物中各组成物质的百分含量(或浓度)也随之改变,原来的平衡被破坏直到建立新条

件下的另一种平衡状态。这种改变的过程,叫化学平衡的移动。影响化学平衡的主要条件有

______、______、_____。

疑难点拨

试题详情

3、化学平衡的特点:“_、__ 、__  ”

a.反应物与生成物处于动态平衡,在化学平衡状态,可逆反应的正反应和逆反应都还在不断的进行着,只是此时V正=V逆(且都大于0)。而不是停止了化学反应。

b.在化学平衡状态,任何反应物与生成物浓度保持一定,百分组成保持一定;(或说反应物与生成物的含量保持一定)

c.影响平衡的外界条件改变,平衡状态即被破坏,发生平衡移动。

试题详情

2、 当一个可逆反应的__________________相等时,________________不再改变,达到一种“平衡状态”,这就是这个反应所能达到的限度。

任何化学反应都有一定的限度,有的反应限度较大,反应进行的比较彻底,反应物转化为生成物的转化率较大;有的反应限度较小,反应物转化为生成物的转化率较小。

试题详情


同步练习册答案