0  369770  369778  369784  369788  369794  369796  369800  369806  369808  369814  369820  369824  369826  369830  369836  369838  369844  369848  369850  369854  369856  369860  369862  369864  369865  369866  369868  369869  369870  369872  369874  369878  369880  369884  369886  369890  369896  369898  369904  369908  369910  369914  369920  369926  369928  369934  369938  369940  369946  369950  369956  369964  447090 

3.动量定理的定量计算

利用动量定理解题,必须按照以下几个步骤进行:

(1)明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。

(3)规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。

(5)根据动量定理列式求解。

[例7]质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:

(1)沙对小球的平均阻力F

(2)小球在沙坑里下落过程所受的总冲量I

解析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C

(1)在下落的全过程对小球用动量定理:重力作用时间为t1+t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:

mg(t1+t2)-Ft2=0,  解得:

(2)仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:

   mgt1-I=0,∴I=mgt1

点评:这种题本身并不难,也不复杂,但一定要认真审题。要根据题意所要求的冲量将各个外力灵活组合。若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。当t1>> t2时,F>>mg

[例8] 质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?

解析:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为,该过程经历时间为v0/μg,末状态拖车的动量为零。全过程对系统用动量定理可得:

点评:这种方法只能用在拖车停下之前。因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是

[例9] 质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反跳的最大高度为h2=0.2m,从小球下落到反跳到最高点经历的时间为Δt=0.6s,取g=10m/s2。求:小球撞击地面过程中,球对地面的平均压力的大小F

解析:以小球为研究对象,从开始下落到反跳到最高点的全过程动量变化为零,根据下降、上升高度可知其中下落、上升分别用时t1=0.3s和t2=0.2s,因此与地面作用的时间必为t3=0.1s。由动量定理得:mgΔt-Ft3=0 ,F=60N

[例10]  一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经 过t3=6s停下来。试求物体在水平面上所受的摩擦力。

解析:

解法l  取物体为研究对象,它的运动可明显分为三个过程。设第一、二两过程末的速度分别为v1v2。,物体所受摩擦力为f,规定推力的方向为正方向。根据动量定理对三个过程分别有:

联立上述三式得 

解法2  规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量p1=0,末动量p2=0。据动量定理有

即: 

解得 

点评:遇到涉及力、时间和速度变化的问题时,运用动量定理解答往往比运用牛顿运动定律及运动学规律求解简便。由解法2可知,合理选取研究过程,能简化解题步骤,提高解题速度。本题也可以用牛顿运动定律求解。

试题详情

2.动量定理的定性应用

[例4] 鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。这是为什么?

解析:两次碰地(或碰塑料垫)瞬间鸡蛋的初速度相同,而末速度都是零也相同,所以两次碰撞过程鸡蛋的动量变化相同。根据Ft=Δp,第一次与地板作用时的接触时间短,作用力大,所以鸡蛋被打破;第二次与泡沫塑料垫作用的接触时间长,作用力小,所以鸡蛋没有被打破。(再说得准确一点应该指出:鸡蛋被打破是因为受到的压强大。鸡蛋和地板相互作用时的接触面积小而作用力大,所以压强大,鸡蛋被打破;鸡蛋和泡沫塑料垫相互作用时的接触面积大而作用力小,所以压强小,鸡蛋未被打破。)

[例5]某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?

解析:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。第二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。

[例6]  一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则(   )

A、过程I中钢珠的动量的改变量等于重力的冲量

B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小

C、I、Ⅱ两个过程中合外力的总冲量等于零

D、过程Ⅱ中钢珠的动量的改变量等于零

解析:根据动量定理可知,在过程I中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的 冲量,选项A正确;过程I中阻力的冲量的大小等于过程I中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然B选项不对;在I、Ⅱ两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故C选项正确,D选项错误。因此,本题的正确选项为A、C。

试题详情

1.动量定理

物体所受合外力的冲量等于物体的动量变化。既I=Δp

(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(3)现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)。

(4)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。

点评:要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量” 等于动量的变化量。这是在应用动量定理解题时经常出错的地方,要引起注意。

[例3]以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?

解析:因为合外力就是重力,所以Δp=Ft=mgt

点评:有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。当合外力为恒力时往往用Ft来求较为简单;当合外力为变力时,在高中阶段只能用Δp来求。

试题详情

2.冲量

按定义,力和力的作用时间的乘积叫做冲量:I=Ft

(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(3)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。

[例2] 质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?

解析:力的作用时间都是,力的大小依次是mgmgcosαmgsinα,所以它们的冲量依次是: 

点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

试题详情

2.动量的变化:

   

由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

(1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。

[例1]一个质量为m=40g的乒乓球自高处落下,以速度=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少?

解析:取竖直向下为正方向,乒乓球的初动量为:

  

乒乓球的末动量为:

  

乒乓球动量的变化为:

   =

负号表示的方向与所取的正方向相反,即竖直向上。

试题详情

1.动量

按定义,物体的质量和速度的乘积叫做动量:p=mv

(1)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(2)动量是矢量,它的方向和速度的方向相同。

(3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

试题详情

9.(2004年全国理综第23题,16分)在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。

试题详情

8.我国自制新型“长征”运载火箭,将模拟载人航天试验飞船“神舟三号”送入预定轨道,飞船绕地球遨游太空t=7天后又顺利返回地面.飞船在运动过程中进行了预定的空间科学实验,获得圆满成功。

(1)设飞船轨道离地高度为h,地球半径为R,地面重力加速度为g.则“神舟三号”飞船绕地球正常运转多少圈?(用给定字母表示). 

(2)若h=600 km,R=6400 km,则圈数为多少?

试题详情

7.(1998年全国卷)宇航员站在某一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M

试题详情

6.航天技术的不断发展,为人类探索宇宙创造了条件.1998年1月发射的“月球勘探者号”空间探测器,运用最新科技手段对月球进行近距离勘探,在月球重力分布、磁场分布及元素测定等方面取得最新成果.探测器在一些环形山中央发现了质量密集区,当飞越这些重力异常区域时

A.探测器受到的月球对它的万有引力将变大

B.探测器运行的轨道半径将变大

C.探测器飞行的速率将变大

D.探测器飞行的速率将变小

试题详情


同步练习册答案