0  370114  370122  370128  370132  370138  370140  370144  370150  370152  370158  370164  370168  370170  370174  370180  370182  370188  370192  370194  370198  370200  370204  370206  370208  370209  370210  370212  370213  370214  370216  370218  370222  370224  370228  370230  370234  370240  370242  370248  370252  370254  370258  370264  370270  370272  370278  370282  370284  370290  370294  370300  370308  447090 

5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF∩HG=M,则点M(  ).

(A)一定在AC上               (B)一定在BD上

(C)可能在AC上,也可能在BD上       (D)既不在AC上,也不在BD上

试题详情

4、已知M表示平面,a、b表示直线,给出下面四个命题:

①若a//b,a⊥M,则b⊥M;          ②若a⊥M,b⊥M,则a//b;

③若a⊥M,a⊥b,则b//M;          ④若a//M ,a⊥b,则b⊥M.

其中正确的命题的选项是(  ).

(A) ①②     (B) ①②③     (C) ②③④     (D) ①②④

试题详情

3、已知直线a平面α,则直线b//a是b//α的(  ).

(A)充分不必要条件    (B)必要不充分条件

(C)充要条件       (D)既不充分又不必要条件

试题详情

2、若a、b、c为三条直线,且a⊥c,b⊥c,则a、b位置关系是(  ).

(A) 相交  (B)平行   (C)异面   (D)相交、平行或异面

试题详情

1、一条直线和梯形两腰垂直,则这条直线和底边的位置关系是(  ).

(A)相交不垂直  (B)平行  (C)垂直  (D)不确定

试题详情

21.解:

(Ⅰ).·································· 2分

()时,,即

()时,,即

因此在每一个区间()是增函数,

在每一个区间()是减函数.·································· 6分

(Ⅱ)令,则

故当时,

,所以当时,,即.···························· 9分

时,令,则

故当时,

因此上单调增加.

故当时,

于是,当时,

时,有

因此,的取值范围是.   12分

试题详情

21.(Ⅰ)解:依题设得椭圆的方程为

直线的方程分别为.············································ 2分

如图,设,其中

满足方程

.①

,得

上知,得

所以,化简得

解得.···································································································· 6分

(Ⅱ)解法一:根据点到直线的距离公式和①式知,点的距离分别为

.································································ 9分

,所以四边形的面积为

,即当时,上式取等号.所以的最大值为.····························· 12分

解法二:由题设,

,由①得

故四边形的面积为

···················································································································· 9分

时,上式取等号.所以的最大值为.·············································· 12分

试题详情

20.解:

(Ⅰ)依题意,,即

由此得.··················································································· 4分

因此,所求通项公式为

.①········································································ 6分

(Ⅱ)由①知

于是,当时,

时,

.又

综上,所求的的取值范围是.··································································· 12分

试题详情

18.解法一:

依题设知

(Ⅰ)连结于点,则

由三垂线定理知,.····················································································· 3分

在平面内,连结于点

由于

互余.

于是

与平面内两条相交直线都垂直,

所以平面.······························································································· 6分

(Ⅱ)作,垂足为,连结.由三垂线定理知

是二面角的平面角.································································· 8分

所以二面角的大小为.·························································· 12分

解法二:

为坐标原点,射线轴的正半轴,

建立如图所示直角坐标系

依题设,

.················································································ 3分

(Ⅰ)因为

所以平面.································································································ 6分

(Ⅱ)设向量是平面的法向量,则

,则.······························································ 9分

等于二面角的平面角,

所以二面角的大小为.························································· 12分

试题详情

17.解:

各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为

(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当,     2分

,又

.·············································································································· 5分

(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和.

支出     

盈利     

盈利的期望为  ,················································· 9分

知,

(元).

故每位投保人应交纳的最低保费为15元.··································································· 12分

试题详情


同步练习册答案