2.要注意准确理解“有且仅有” “至多”“至少”“全是”“都不是”“不都是”等词语的确切含义.
1.解有关组合应用问题时,首先要判断这个问题是不是组合问题.区别组合问题和排列问题的唯一标准是“顺序”.需要考虑顺序的是排列问题不需要考虑顺序的的才是组合问题.
3.组合数性质:
①
②
③
④
⑤
|
例1. 某培训班有学生15名,其中正副班长各一名,先选派5名学生参加某种课外活动.
(1) 如果班长和副班长必须在内有多少种选派法.
(2) 如果班长和副班长有且只有1人在内有多少种派法.
(3) 如果班长和副班长都不在内有多少种派法.
(4) 如果班长和副班长至少有1人在内,有多少种派法.
解;(1) =286 (2) =1430 (3) =1287
(4) -=1716
变式训练1:从4名男生和3名女生中选4人参加某个座谈会,若这4个人中必须既有男生又有女生,则不同的选法有 ( )
A.140 B.120
C.35 D.34
解:D
例2. 从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )
A、108种 B、186种 C.216种 D、270种
解:没有女生的选法有, 至少有1名女生的选法有种,
所以选派方案总共有:31×=186种。 故选B.
变式训练2:从5位男教师和4位女教师中选出3位教师派到3个班担任班主任(每班一位班主任),要求这3位班主任中男女教师都要有,则不同的选派方案共有 ( )
A.210种 B.420种
C.630种 D.840种
解:B
例3. (1) 把10本相同的书分给编号1,2,3的阅览室,要求每个阅览室分得的书数不大于其编号数,则不同的分法有多少种?
(2) 以平行六面体ABCD-A1B1C1D21的任意三个点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面情况有多少种?
(3) 一次文艺演出中需要给舞台上方安装一排完全相同的彩灯15只,现以不同的亮灯方式来增加舞台效果,设计者按照每次亮灯时恰好有6只是关的,且相邻的灯不能同时关掉,两端的灯必须要亮的要求进行设计,求有多少不同的亮灯方式?
解:(1)先在编号为1,2,3的阅览室中依次放入0,1,2本书,再用隔板法分配剩下的书有=15种,(2)平行六面体中能构成三角形个数=56为任取两个有种情况,其中共面的有12,因而不共面的有-12种 (3)
变式训练3:马路上有编号为1, 2, 3, 4…..10的十盏路灯,为节约用电,又不影响照明可以把其中的三盏关掉,但不能关掉相邻的两盏,也不能关掉两端的路灯,则满足条件的关灯方法种数有_______种.
解:20 用插排法,把七盏亮灯排成一排,七盏亮灯之间有6个间隔,再将三盏不亮的灯插入其中的3个间隔,一种插法对应一种关灯的方法,故有种关灯方法.
例4. 四面体的顶点和各棱中点共有10个点,
(1) 在其中取4个共面的点,共有多少种不同的取法?
(2) 在其中取4个不共面的点,共有多少种不同的取法.
解:(1)四个点共面的取法可分三类.第一类:再同一个面上取,共有4个面;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有6个面;第三类:在六条棱的六个中点中取,取两对对棱的4个中点,共有=3个面.故有69种.
(2) 用间接法.共=141个面.
变式训练4:在1, 2, 3…100这100个数中任选不同的两个数,求满足下列条件时各有多少种不同的取法.
(1) 其和是3的倍数
(2) 其差是3的倍数(大数减小数).
(3) 相加,共有多少个不同的和.
(4) 相乘,使其积为7的倍数.
解:(1) 1650 (2) 1617 (3) 197 (4)1295
|
2.排列与组合的共同点,就是都要“从n个不同元素中,任取个元素”,而不同点就是前者要“按一定的顺序成一列”,而后者却是“不论怎样的顺序并成一组”.
从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示.
组合数公式= =
在求具体的组合数时,常用上面的公式,分子由连续个自然数之积,最大的数为,最小的数是,分母是,如果进行抽象的证明时,一般常用下面的公式= ,它的分子是,分母是与的积.
1.一般地说,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.
4.由于排列问题的结果一般数目较大.不易直接验证,解题时要深入分析,严密周详,要防止重复和遗漏.为此可用多种不同的方法求解看看结果是否相同.
第3课时 组 合
|
3.解排列应用问题思路一定要清晰,并随时注意转换解题角度,通过练习要认真理会解排列问题的各种方法.
2.解有约束条件的排列问题的几种策略.
a. 特殊元素,特殊位置优先定位(也有个别例外情况,见例1)
b. 相邻问题捆绑处理不相邻问题插空处理
c. 正难则反,等价转换
1.解排列应用问题首先必须认真分析题意.看能否把问题归结为排队(即排列)问题,较简单的排列问题常用框图或树型来处理(注意也有个别问题不能用框图来处理 如不相邻问题等)
5.排列问题常用框图来处理.
|
例1、(1) 元旦前某宿舍的四位同学各写一张贺卡先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配有多少种?
(2) 同一排6张编号1,2,3,4,5,6的电影票分给4人,每人至少1张,至多2张,且这两张票有连续编号,则不同分法有多少种?
(3)(06湖南理14)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法有多少种数?
解:(1)分类:9种
(2)假设五个连续空位为一个整元素a,单独一个空位为一个元素b,另4人为四个元素c1、c2、c3、c4.问题化为a,b,c1,c2,c3,c4的排列,条件是a,b不相邻,共有=48种;
(3)将丙,丁看作一个元素,设想5个位置,只要其余2项工程选择好位置,剩下3个位置按甲、乙(两丁)中唯一的,故有=20种
变式训练1:有2个红球、3个黄球、4个白球,同色球不加以区分, 将这9个球排成一列有 ____ 种不同的方法.
解:9个球排成一列有种排法,再除去2红、3黄、4白的顺序即可,
故共有排法种。 答案:1260
例2.5男4女站成一排,分别指出满足下列条件的排法种数
(1) 甲站正中间的排法有 种,甲不站在正中间的排法有 种.
(2) 甲、乙相邻的排法有 种,甲乙丙三人在一起的排法有 种.
(3) 甲站在乙前的排法有 种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有 种.丙在甲乙之间(不要求一定相邻)的排法有 种.
(4) 甲乙不站两头的排法有 种,甲不站排头,乙不站排尾的排法种有 种.
(5) 5名男生站在一起,4名女生站在一起的排法有
种.
(6) 女生互不相邻的排法有 种,男女相间的排法有 种.
(7) 甲与乙、丙都不相邻的排法有 种,甲乙丙三人有且只有两人相邻的排法有 种.
(8) 甲乙丙三人至少有1人在两端的排法有 种.
(9) 甲乙之间有且只有4人的排法有 种.
解:(1)8!, 8×8! (2) 2×8!,6×7!(3) ×9!, ×1, ×2×1
(4) ×7!8!+7×7×7!
(5) 2×5!×4!
(6) 5!×, 5!×4!×2
(7) 9!-2×8!×2+2×7!, 3×6!××2
(8) 9!-×6!
(9) 捆绑法.2××4! 也可用枚举法2×4×7!
变式训练2:从包含甲的若干名同学中选出4人分别参加数学、物理、化学和英语竞赛,每名同学只能参加一种竞赛,且任2名同学不能参加同一种竞赛,若甲不参加物理和化学竞赛,则共有72种不同的参赛方法,问一共有多少名同学?
解:5.
例3. 在4000到7000之间有多少个四个数字均不相同的偶数
解:分两类.
①类5在千位上:1×5×=280
②类4或6在千位上:2×4×=448
故有280+448=728个
变式训练3:3张卡片的正反面上分别有数字0和1,3和4,5和6,当把它们拼在一起组成三位数字的时可得到多少个不同的三位数(6可做9用)
解:若6不能做9用,由于0不能排百位,此时有5×4×2=40个.这40个三位数中含数字6的有2×3×2+1×4×2=20个,故6可做9用时,可得三位数40+20=60个
例4. (1) 从6名短跑运动员中选4人参加4×100米接力赛,问其中不跑第一棒的安排方法有多少种?
(2) 一排长椅上共有10个座位,现有4人就坐,恰有5个连续空位的坐法有多少种?
解:(1)①先安排第四棒,再安排其他三棒的人选,故有5×=300种 ② 60对.
(2)假设五个连续空位为一个元素A,B为单独一个空位元素,另4个为元素C1,C2,C3,C4间题转化为A,B,C1,C2,C3,C4排列,条件A,B不相邻,有=480种.
变式训练4:某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).
解:96
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com