10、若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是( )
A. B. C. D.
9、定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设 a>b>0 ,给出下列不等式:
① f(b)-f(-a)>g(a)-g(-b) ② f(b)-f(-a)<g(a)-g(-b)
③ f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)
其中成立的是 ( )
(A)①与④ (B)②与③ (C)①与③ (D)②与④
8、在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )
(A)(π,π) (B)(π,π)
(C)(0,) (D)(π,π)
7、不等式组的解集是( )
(A)(0,2) (B)(0,2.5) (C)(0,) (D)(0,3)
6、在圆x+y=4上与直线4x+3y-12=0距离最小的点的坐标是( )
(A)(,) (B)(,-)
(C)(-,) (D)(-,-)
5、函数y=sin(-2x)+sin2x的最小正周期是( )
(A) (B) (C) 2 (D) 4
4、若,P=,Q=,R=,则( )
(A)RPQ (B)PQ R
(C)Q PR (D)P RQ
3、设f(x)是(-∞,∞)是的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )
(A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5
1、如果,那么等于( )
2 已知,那么使成立的充要条件是 ( )
10.1+logx3与2logx2(x>0且x≠1)的大小.
解:(1+logx3)-2logx2=logx.
当或
即0<x<1或x>时,
有logx>0,1+logx3>2logx2.
当①或②时,logx<0.
解①得无解,解②得1<x<,
即当1<x<时,有logx<0,
1+logx3<2logx2.
当x=1,即x=时,有logx=0.
∴1+logx3=2logx2.
综上所述,当0<x<1或x>时,1+logx3>2logx2;
当1<x<时,1+logx3<2logx2;
当x=时,1+logx3=2logx2.
[探索题]x、y是正实数,记
A(x,y)=,B(x,y)=
(1) 证明:A(x,y)≤B(x,y)
(2) 是否存在常数C,使得A(x,y)≤C≤B(x,y)恒成立?证明你的结论.
证明:(1)B(x,y)-A(x,y)=
∴A(x,y)≤B(x,y).
(2)鉴于二式中关于x,y的轮换对称性,令x=y,得A(x,y)=B(x,y)=
下证A(x,y)≤≤B(x,y)
同理.
所以,存在正常数C=,使A(x,y)≤C≤B(x,y)成立.
(2)法2: (放缩法)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com