20.( 本小题满分14分)
已知动圆Q经过点A,且与直线相切,动圆圆心Q的轨迹为曲线C,过定点作与y轴平行的直线且和曲线C相交于点M1,然后过点M1作C的切线和x轴交于点,再过作与y轴平行的直线且和C相交于点M2,又过点M2作C的切线和x轴交于点,如此继续下去直至无穷,记△的面积为
(Ⅰ)求曲线C的方程;
(Ⅱ)试求的值。
19. (本小题满分14分)
设,令,,又,.
(Ⅰ)判断数列是等差数列还是等比数列并证明;
(Ⅱ)求数列的通项公式;
(Ⅲ)求数列的前项和.
18.(本小题满分14分)
甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:
甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。
乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。
请你根据提供的信息说明:
(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。
(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。
(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
17.(本小题满分12分)
如图(1),是等腰直角三角形,,、分别为、的中点,将沿折起,使在平面上的射影恰为的中点,得到图(2).
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积.
图(1) 图(2)
16.(本小题满分12分)
已知复数,,且.
(Ⅰ)若且,求的值;
(Ⅱ)设=,求的最小正周期和单调增区间.
15.(几何证明选讲选做题) 15、如图,PA切于点A,割线PBC经过圆心O,OB=PB=1, OA绕点O逆时针旋转60°到OD,则PD的长为 .
14、(坐标系与参数方程选做题) 曲线的极坐标方程化为直角坐标方程为 .
13、下表给出一个“直角三角形数阵”:满足每一列成等
差数列,从第三行起,每一行的数成等比数列,且每一行
的公比相等,记第行第列的数为,
11、将5个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有 .
12、一个几何的三视图如图所示:其中,正视图中△ABC的边长是2的正三角形,俯视图为正六边形,那么该几何体几的体积为 .
10、农民收入由工资性收入和其它收入两部分构成。03年某地区农民人均收入为3150元(其中工资源共享性收入为1800元,其它收入为1350元),预计该地区自04年起的5年内,农民的工资源共享性收入将以每年的年增长率增长,其它性收入每年增加160元。根据以上数据,08年该地区人均收入介于 ( )
(A)4200元~4400元 (B)4400元~4460元
(C)4460元~4800元 (D)4800元~5000元
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com