0  374459  374467  374473  374477  374483  374485  374489  374495  374497  374503  374509  374513  374515  374519  374525  374527  374533  374537  374539  374543  374545  374549  374551  374553  374554  374555  374557  374558  374559  374561  374563  374567  374569  374573  374575  374579  374585  374587  374593  374597  374599  374603  374609  374615  374617  374623  374627  374629  374635  374639  374645  374653  447090 

(三)解答题(共6题)

1.(北京卷理20)已知集合对于,定义A与B的差为A与B之间的距离为

(Ⅰ)证明:,且;

(Ⅱ)证明:三个数中至少有一个是偶数

(Ⅲ) 设P,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为(P).

  证明:(P)≤.

证明:(I)设

    因为,所以,

    从而

   又

由题意知.

时,;

   当时,

所以

(II)设

  .

  记,由(I)可知

      

      

      

所以中1的个数为的1的个数为

   设是使成立的的个数,则

   由此可知,三个数不可能都是奇数,

   即,,三个数中至少有一个是偶数。

(III),其中表示中所有两个元素间距离的总和,

种所有元素的第个位置的数字中共有个1,个0则=

由于所以

从而

2. (北京卷文20)已知集合对于,定义A与B的差为

A与B之间的距离为

(Ⅰ)当n=5时,设,求

(Ⅱ)证明:,且;

(Ⅲ) 证明:三个数中至少有一个是偶数

(Ⅰ)解:=(1,0,1,0,1)

是使成立的的个数。则

3.(广东卷理21))设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离ρ(A,B)为ρ(A,B)=+.对于平面上给定的不同的两点A(),B()

若点C(x, y)是平面上的点,试证明ρρ;

在平面上是否存在点C(x, y),同时满足①ρ= ρ;  ②ρ= ρ;若存在,请求所给出所有符合条件的点;若不存在,请予以证明。

解析:设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为.

当且仅当时等号成立,即三点共线时等号成立.

(2)当点C(x, y) 同时满足①P+P= P,②P= P时,点是线段的中点. ,即存在点满足条件。

4.(江苏卷23)已知△ABC的三边长为有理数

(1)求证cosA是有理数

(2)对任意正整数n,求证cosnA也是有理数

[解析] 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。

(方法一)(1)证明:设三边长分别为,∵是有理数,

是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,

必为有理数,∴cosA是有理数。

(2)①当时,显然cosA是有理数;

时,∵,因为cosA是有理数, ∴也是有理数;

②假设当时,结论成立,即coskA、均是有理数。

时,

解得:

∵cosA,均是有理数,∴是有理数,

是有理数。   即当时,结论成立。

综上所述,对于任意正整数n,cosnA是有理数。

(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知

是有理数。

(2)用数学归纳法证明cosnA和都是有理数。

①当时,由(1)知是有理数,从而有也是有理数。

②假设当时,都是有理数。

时,由

及①和归纳假设,知都是有理数。

即当时,结论成立。

综合①、②可知,对任意正整数n,cosnA是有理数。

5.(上海卷理22)若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

解析:(1) ; (2) 对任意两个不相等的正数a、b,有, 因为, 所以,即a3+b3比a2b+ab2远离; (3) , 性质:1°f(x)是偶函数,图像关于y轴对称,2°f(x)是周期函数,最小正周期, 3°函数f(x)在区间单调递增,在区间单调递减,kÎZ, 4°函数f(x)的值域为

6.(上海卷文22)若实数满足,则称接近.

(1)若比3接近0,求的取值范围;

(2)对任意两个不相等的正数,证明:接近

(3)已知函数的定义域.任取等于中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

解析:(1) xÎ(-2,2); (2) 对任意两个不相等的正数a、b,有, 因为, 所以,即a2b+ab2比a3+b3接近; (3) ,kÎZ, f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小值为0, 函数f(x)在区间单调递增,在区间单调递减,kÎZ.

试题详情

15.[答案]CD   DE

[解析]在Rt△ADB中DC为高,则由射影定理可得,故,即CD长度为a,b的几何平均数,将OC=代入可得,所以ED=OD-OE=,故DE的长度为a,b的调和平均数.

试题详情

19.(2010广东文数)(本题满分12分)

某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.

如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

解:设为该儿童分别预订个单位的午餐和个单位的晚餐,设费用为F,则F,由题意知:

画出可行域:

变换目标函数:

(2010湖北理数)15.设a>0,b>0,为a,b的调和平均数。如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆。过点C作AB的垂线交半圆于D。连结OD,AD,BD。过点C作OD的垂线,垂足为E。则图中线段OD的长度是a,b的算术平均数,线段   的长度是a,b的几何平均数,线段   的长度是a,b的调和平均数。

试题详情

19.(2010广东理数)(本小题满分12分)

  某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.

  如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?

解:设该儿童分别预订个单位的午餐和晚餐,共花费元,则

  可行域为

12 x+8 y ≥64

6 x+6 y ≥42

6 x+10 y ≥54

x≥0, x∈N

  y≥0, y∈N

  即

3 x+2 y ≥16

 x+ y ≥7

3 x+5 y ≥27

x≥0, x∈N

  y≥0, y∈N

   作出可行域如图所示:

  经试验发现,当x=4,y=3 时,花费最少,为=2.5×4+4×3=22元.

试题详情

5.对一个命题而言,使结论成立的充分条件可能不止一个,必要条件也可能不止一个.

试题详情

4.对于充要条件的证明题,既要证明充分性,又要证明必要性,从命题角度出发,证原命题为真,逆命题也为真;求结论成立的充要条件可以从结论等价变形(换)而得到,也可以从结论推导必要条件,再说明具有充分性.

试题详情

3.等价变换是判断充分、必要条件的重要手段之一,特别是对于否定的命题,常通过它的等价命题,即逆否命题来考查条件与结论间的充分、必要关系.

试题详情

2.确定条件为不充分或不必要的条件时,常用构造反例的方法来说明.

试题详情

1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念.

试题详情

4.A:圆与直线相切,B:

分析:要判断A是B的什么条件,只要判断由A能否推出B和由B能否推出A即可.

解:(1) 当,取,则方程无实根;若方程有实根,则由推出6,由此可推出.所以A是B的必要非充分条件.

(2)若

所以成立

成立   取,知不一定成立,

故A是B的充分不必要条件.

(3) 由,由解得,所以A推不出B,但B可以推出A,故A是B的必要非充分条件.

(4) 直线与圆相切圆(0,0)到直线的距离,即.所以A是B的充要条件.

变式训练1:指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). 

(1)在△ABC中,p:∠A=∠B,q:sinA=sinB; 

(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6; 

(3)非空集合A、B中,p:x∈A∪B,q:x∈B; 

(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0. 

解: (1)在△ABC中,∠A=∠BsinA=sinB,反之,若sinA=sinB,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件. 

(2)易知: p:x+y=8, q:x=2且y=6,显然qp.但pq,即q 是p 的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件. 

(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件. 

(4)条件p:x=1且y=2,条件q:x=1或y=2, 

所以pq但qp,故p是q的充分不必要条件. 

例2. 已知p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析pq的什么条件.

解:若方程x2+mx+n=0有两个小于1的正根,设为x1x2

则0<x1<1、0<x2<1,∵x1+x2=-mx1x2n

∴0<-m<2,0<n<1  ∴-2<m<0,0<n<1

pq的必要条件.

又若-2<m<0,0<n<1,不妨设m=-1,n

则方程为x2x+=0,∵△=(-1)2-4×=-1<0. ∴方程无实根  ∴pq的非充分条件.

综上所述,pq的必要非充分条件.

变式训练2:证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0. 

证明:充分性:若ac<0,则b2-4ac>0,且<0, 

∴方程ax2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根.  

必要性:若一元二次方程ax2+bx+c=0有一正根和一负根,则=b2-4ac>0,x1x2=<0,∴ac<0.

综上所述,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.

例3. 已知p: |1-|≤2,q::x2-2x+1-m2≤0(m>0),若的必要而不充分条件,求实数m的取值范围.

解: 由题意知:命题:若┒p是┑q的必要而不充分条件的等价命题即逆否命题为:pq的充分不必要条件.

p: |1-|≤2-2≤-1≤2-1≤≤3-2≤x≤10

q: x2-2x+1-m2≤0x-(1-m)][x-(1+m)]≤0*

pq的充分不必要条件,

∴不等式|1-|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集.

又∵m>0,∴不等式*的解集为1-mx≤1+m

,∴m≥9,

∴实数m的取值范围是[9,+∞

变式训练3:已知集合和集合,求a的一个取值范围,使它成为的一个必要不充分条件.

解:

   由

所以是必要但不充分条件. 说明:此题答案不唯一.

例4. “函数y=(a2+4a-5)x2-4(a-1)x+3的图象全在x轴的上方”,这个结论成立的充分必要条件是什么?

解:函数的图象全在轴上方,若是一次函数,则

若函数是二次函数,则:

反之若,由以上推导,函数的图象在轴上方,综上,充要条件是

变式训练4:已知P={x | |x-1| | >2},S={x | x2+的充要条件是,求实数的取值范围.

分析:的充要条件是,即任取,反过来,任取

据此可求得的值.

解:的充要条件是

∵P={x || x-1|>2}}=

S={x | x2+(a+1)x+a>0)}={x | (x+a)(x+1)>0}

归纳小结
 
 

试题详情


同步练习册答案