0  375216  375224  375230  375234  375240  375242  375246  375252  375254  375260  375266  375270  375272  375276  375282  375284  375290  375294  375296  375300  375302  375306  375308  375310  375311  375312  375314  375315  375316  375318  375320  375324  375326  375330  375332  375336  375342  375344  375350  375354  375356  375360  375366  375372  375374  375380  375384  375386  375392  375396  375402  375410  447090 

5.总体分布估计:

总体分布估计主要指两类.一类是用样本的频率分布去估计总体(的概率)分布.二类是用样本的某些数字特征(例如平均数、方差、标准差等)去估计总体的相应数字特征.

试题详情

4.总体分布和样本频率分布

总体取值的_______分布规律称为总体分布.

样本频率分布_______称为样本频率分布.

试题详情

3.分层抽样

当已知总体由_______的几部分组成时,为了使样本更能充分地反映总体的情况,常将总体分成几个部分,然后按照各部分所占的_______进行抽样,这种抽样叫做_______.其中所分成的各个部分叫做_______.

试题详情

2.简单随机抽样

设一个总体由N个个体组成,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个个体被抽到的_______相等,就称这样的抽样为_______.

试题详情

1.总体、样本、样本容量

我们要考察的对象的全体叫做_______,其中每个考察的对象叫_______.从总体中抽出的一部分个体叫做_______,样本中个体的数目叫做_______.

试题详情

3.会用样本平均数估计总体期望,会用样本的方差、标准差估计总体方差、标准差.

 

“统计”这一章,是初中数学中的“统计初步”的深化和拓展.要求主要会用随机抽样,分层抽样的方法从总体中抽取样本,并用样本频率分布估计总体分布.本章高考题以基本题(中、低档题)为主,每年只出一道填空题,常以实际问题为背景,综合考查学生应用基础知识解决实际问题的能力.高考的热点是总体分布的估计和抽样方法.知识的交汇点是排列、组合、概率与统计的解答题.

基础过关
 
第1课时   抽样方法与总体分布估计

试题详情

2.会用样本频率分布估计总体的概率分布.

试题详情

1.了解随机抽样,了解分层抽样的意义.

试题详情

2. 间接证明:间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法;反证法即从      开始,经过正确的推理,说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法(归谬法).

典型例题
 
 

例1.若均为实数,且

求证:中至少有一个大于0。

答案:(用反证法)

假设都不大于0,即,则有

   =

均大于或等于0,,∴,这与假设矛盾,故中至少有一个大于0。

变式训练1:用反证法证明命题“可以被5整除,那么中至少有一个能被5整除。”那么假设的内容是       

答案:a,b中没有一个能被5整除。解析:“至少有n个”的否定是“最多有n-1个”。

例2. △ABC的三个内角A、B、C成等差数列,

求证:

答案:证明:要证,即需证

即证

又需证,需证

∵△ABC三个内角A、B、C成等差数列。∴B=60°。

由余弦定理,有,即

成立,命题得证。

变式训练2:用分析法证明:若a>0,则

答案:证明:要证

只需证

a>0,∴两边均大于零,因此只需证

只需证

只需证,只需证

即证,它显然成立。∴原不等式成立。

例3.已知数列

求证:当时,

(1)

(2)

(3)

解:(1)证明:用数学归纳法证明.

①当时,因为是方程的正根,所以

②假设当时,

因为

      

所以

即当时,也成立.

根据①和②,可知对任何都成立.

(2)证明:由(),

因为,所以

所以

(3)证明:由,得

所以

于是

故当时,

又因为

所以

试题详情

1.直接证明:直接从原命题的条件逐步推得结论成立,这种证明方法叫直接证明;

直接证明的两种基本方法--分析法和综合法

⑴ 综合法 --       ;⑵分析法 --       ;  

试题详情


同步练习册答案