219. 下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是 ( ) 解析:C
218.已知平面α⊥平面β,平面α⊥平面γ,且β∩γ=a,求证:a⊥α。
解析: 此题需要作出辅助线,可有多种证明方法。
证法1:如图2-57:在α内取一点P,作PA⊥β于A,PB⊥γ于B, 则PA⊥a,PB⊥a,又PAα,PBα,PA∩PB=P,∴ a⊥α。 证法2:如图2-58,在a上任取一点Q,作QC ⊥α于C,∵β∩γ=a,∴Q∈β, 又β⊥α,∴QCβ,同理可证QCγ,∴QC为β与γ的交线a,∴ a⊥α。 证法3:如图2-59,在a上取点R,在β内作RD垂直于α、β的交线l于D,
∴RD⊥α,同法在γ内,作RE垂直于α,交α与γ的交线m于E,则RE⊥α,过平面外一点,作这个平面的垂线是惟一的,∴RD、RE重合,则它既包含于β,又包含于γ,
∴ a⊥α。 证法4:如图2-60,在β、γ内分别取M、N分别作α、β的交线l和α、γ的交线m的垂线c,d,则c⊥α,d⊥α,c//d,c//a,∴ a⊥α。
点评: 此题是线线,线面,面面垂直转化典型题,多解题,对沟通知识和方法,开拓解题思路是有益的。
217. 判定下列命题的真假 (1)两个平面垂直,过其中一个平面内一点作与它们的交线垂直的直线,必垂直于另一个平面;
(2)两个平面垂直,分别在这两个平面内且互相垂直的两直线,一定分别与另一平面垂直; (3)两平面垂直,分别在这两个平面内的两直线互相垂直。
解析:(1)若该点在两个平面的交线上,则命题是错误的, 如图2-55,正方体AC1中,平面AC⊥平面AD1,平面AC∩平面AD1=AD, 在AD上取点A,连结AB1,则AB1⊥AD,即过棱上一点A的直线AB1 与棱垂直,但AB1与平面ABCD不垂直,其错误的原因是AB1没有保证在平面ADD1A1内,可以看出:线在面内这一条件的重要性; (2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图2-56,在正方体AC1中,平面AD1⊥平面AC,AD1平面ADD1A1,AB平面ABCD,且AB⊥AD1,即AB与AD1相互垂直,但AD1与平面ABCD不垂直; (3)如图2-56:正方体AC1中,平面ADD1A1⊥平面ABCD,AD1平面ADD1A1,AC平面ABCD,AD1与AC所成的角为60,即AD1与AC不垂直
解:由上面的分析知,命题⑴、⑵、⑶都是假命题。
点评:在利用两个平面垂直的性质定理时,要注意下列的三个条件缺一不可:①两个平面垂直;②直线必须在其中一个面内;③直线必须垂直它们的交线。
216.在正方体木块ABCD-A1B1C1D1的表面上有一动点P由顶点A出发按下列规则向点C1移动; ⑴点P只能沿着正方体木块的棱或表面对角线移动; ⑵点P每一变化位置,都使P点到C1点的距离缩短。 动点P共有_________种不同的运行路线。 解析:通过画图逐一计数,共得12种不同路线(从B到C1,就有3种不同路线)
经过一条边,一条对角线的情况有6种, ,,
,,
经过三条边的情况有6种:
,,
,,
215. 如图2-22:在长方体AC1中, (1)求证:BC1//平行平面AB1D1 (2)若E、F分别是D1C,BD的中点,则EF//ADD1A1 解析:(1)∵D1C1DCAB ∴ABC1D1是平行四边形 BC1//AD1 又BC1平面AB1D1,又AD1平面AB1D1
BC1//平面AB1D1 (2)证明:连结AF、CF、AD1, ∵ABCD是正方形,且F是BD的中点,知A、F、C三点共线, 且F是AC的中点,又E是CD1的中点 ∴EF//AD,又EF平面ADD1A1,AD平面ADD1A1, ∴EF//平面ADD1A1
214. 直线a//直线b,直线a与平面α相交,判定直线b与平面α的位置关系,并证明你的结论
证明:假设直线b与α不相交,则bα或b//α (1)若bα,由a//b,bα,aαa//α,与a与平面α相交矛盾,故bα不可能。 (2)若b//α,又a// b,a,b可以确定平面β,设α∩β=c,由cα,知b与c没有公共点,又b、c同在平面β内,故b//c,又a//b,故a//c,cα,aαa//α,这与a与平面α相交矛盾。故b不平行α。 综上所述,b与α必相交。
212.如图2-20,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN//平面BCE。
解析: 要证MN//平面BCE,就是要在平面BCE上找一条直线,证明它与MN平行即可。
证明: 连结AN并延长,交BE延长张于G,连结CG。 由AF//BG,知,故MN//CG,MN平面BCE,CG平面BCE,于是MN//平面BCE。
点评:证线面平行,通常转化为证线线平行,关键是在平面内找到所需的线。 213. 如图2-21,正方体ABCD-A1B1C1D1的棱长为2,E为DD1的中点, (1)判断BD1和过A、C、E三点的平面的位置关系, 并证明你的结论。 (2)求ACE的面积。 证明(1):连结BD,令BD∩AC=F。 ∵BD1和过A、C、E三点的平面平行, 则F是DB的中点,又E是DD1的中点, ∴EF∥BD1 又EF平面ACE,BD1平面ACE, ∴BD1∥平面ACE (2)在正方形ABCD中,AB=2,AC=2,∴AF= 在直角△ADE中,AD=2,DE=1,∴AE=
在Rt△EAF中,EF=== ∴
211. 下列说法中正确的是( ): A. 直线l平行于平面α内的无数条直线,则l//α B. 若直线a在平面α外,则a//α C. 若直线a//b,直线bα,则a//α D. 若直线a//b,bα,那么a就平行于平面α内的无数条直线
解析:画出图形,根据直线与平面平行的定义和判定定理进行分析。
解答: 由直线l 虽与平面α内无数条直线平行,但l有可能在平面α内,知l不一定平行于α,从而排除A 直线a在平面α外,包括两种情况:a//α或a与α相交,故a与α不一定平行,从而排除B 直线a//b ,bα只能说明a和b无公共点,但a可能在平面α内,故a不一定平行于α,从而排除C a//b,bα,那么aα或a//α,故a可能与平面α内的无数条直线平行,从而选择D
点评: 判定直线与平面平行时,要注意直线与平面平行的判定定理中的三个条件,缺一不可。 。
210. 如果两个平面分别平行于第三个平面,那么这两个平面互相平行。 (已知α∥β,γ∥β,求证:α∥γ。) 解析:如图2- ,作两个相交平面分别与α、β、γ交于a、c、e和b、d、f
209. 长方体ABCD-A1B1C1D1中,AB1与A1D所成的角为α,AC与BC1所成的角为β,A1C1与CD1所成的角为γ。 求证:α+β+γ=π
解析:作如图的辅助线 则∠AB1C为AB1与A1D所成的角∠AB1C=α ∵ABA1B1C1D1 ∴BC1//AD1,故∠D1AC为AC与BC1所成的角∠D1AC=β ∵AA1DD1CC1,∴A1C1//AC ∴∠D1CA即为A1C1与CD1所成的角∠D1CA=γ 在△ACD1和△ACB1中,AB1=CD1,B1C=D1A,AC=CA ∴△ACD1≌△CAB1,故∠AB1C=∠AD1C,故∠AD1C=α 在△AD1C中,∠AD1C+∠D1CA+∠D1AC=π 即:α+β+γ=π
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com