317. 如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是( )
A. B. C. D.
解 连D1F1,则D1F1⊥A1C1,又BC⊥CA,所以BD1在平面ACC1A1内的射影为CF1,设AC=2a,则BC=CC1=2a.取BC的中点E,连EF1,则EF∥BD1.
∴cosθ1=cos∠EF1C===,
cosθ2=cos∠AF1C==,
∴ cosθ=cosθ1·cosθ2=·=,应选A.
316. 如图,E、F分别是正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是 (要求:把可能的图的序号都填上)
解 ∵四边形BFD1E在正方体的一对平行面上的投影图形相同,在上、下底面上,E、F的射影在棱的中点,四边形的投影图形为②,在左右侧面上,E、F的连线垂直侧面,从而四边形的投影图形为③,在前后侧面上四边形投影图形也为②.故应填②③.
315.经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.
已知:∠ABCα,Pα,∠PBA=∠PBC,PQ⊥α,Q∈α,如图.
求证:∠QBA=∠QBC
证:PR⊥AB于R,PS⊥BC于S.
则:∠PRB=∠PSB=90°.
∵PB=PB.∠PBR=∠PBS
∴RtΔPRB≌RtΔPSB
∴PR=PS
∵点Q是点P在平面α上的射影.
∴QR=QS
又∵QR⊥AB,QS⊥BC
∴∠ABQ=∠CBQ
314.求证:两条平行线和同一条平面所成的角相等.
已知:a∥b,a∩α=A1,b∩β=B1,∠θ1、∠θ2分别是a、b与α所成的角.如图,求证:∠θ1=∠θ2.
证:在a、b上分别取点A、B.如图,且AA1=BB1,连结AB和A1B1.
∵AA1∥BB1
∴四边形AA1B1B是平行四边形.∴AB∥A1B1
又A1B1α ∴AB∥α.
设AA2⊥α于A2,BB2⊥α于B2,则AA2=BB2
在RtΔAA1A2与中 AA2=BB2,AA1=BB1
∴RtΔAA1A2≌RtΔBB1B2
∴∠AA1A2=∠BB1B2
即 ∠θ1=∠θ2.
313..已知:α∩β=CD,EA⊥α,EB⊥β,求证:CD⊥AB.
312. 正方体ABCD-A1B1C1D1的棱长为a,求A1C1和平面AB1C间的距离.
解法1 如图所示,A1C1∥平面AB1C,又平面BB1DD1⊥平面AB1C.
故若过O1作O1E⊥OB1于E,则OE1⊥平面AB1C,O1E为所求的距离
由O1E·OB1=O1B1·OO1,
可得:O1E=
解法2:转化为求C1到平面AB1C的距离,也就是求三棱锥C1-AB1C的高h.
由 V=V,可得h=a.
解法3 因平面AB1C∥平面C1DA1,它们间的距离即为所求,连BD1,分别交B1O、DO1与F、G(图中未画出)。易证BD1垂直于上述两个平面,故FG长即为所求,易求得
FG=.
点评 (1)求线面距离的先决条件是线面平行,而求线面距离的常用方法是把它们转化为求点面之间的距离,有时也可转化为求面面距离,从本题的解法也可悟出求异面直线之间的距离的思路.
311. 如图,在棱长为a的正方体AC1中,M是CC1的中点,点E在AD上,且AE=AD,F在AB上,且AF=AB,求点B到平面MEF的距离.
解法一:设AC与BD交于O点,EF与AC交于R点,由于EF∥BD所以将B点到面MEF的距离转化为O点到面MEF的距离,面MRC⊥面MEF,而MR是交线,所以作OH⊥MR,即OH⊥面MEF,OH即为所求.
∵OH·MR=OR·MC,
∴OH=.
解法二:考察三棱锥B-MEF,由VB-MEF=VM-BEF可得h.
点评 求点面的距离一般有三种方法:
①利用垂直面;
②转化为线面距离再用垂直面;
③当垂足位置不易确定时,可考虑利用体积法求距离.
310. 平面α内有一个半圆,直径为AB,过A作SA⊥平面α,在半圆上任取一点M,连SM、SB,且N、H分别是A在SM、SB上的射影.(1)求证:NH⊥SB.(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?
解析:此题主要考查直线与直线,直线与平面的垂直关系及论证,空间想象力.
解 (1)连AM,BM.∵AB为已知圆的直径,如图所示.
∴AM⊥BM,
∵SA⊥平面α,MBα,
∴SA⊥MB.
∵AM∩SA=A,∴BM⊥平面SAM.
∵AN平面SAM,
∴BM⊥AN.
∵AN⊥SM于N,BM∩SM=M,
∴AN⊥平面SMB.
∵AH⊥SB于H,且NH是AH在平面SMB的射影
∴NH⊥SB.
(2)由(1)知,SA⊥平面AMB,BM⊥平面SAM.AN⊥平面SMB.
∵SB⊥AH且SB⊥HN.
∴SB⊥平面ANH.
∴图中共有4个线面垂直关系
(3)∵SA⊥平面AMB,
∴ΔSAB、ΔSAM均为直角三角形.
∵BM⊥平面SAM,∴ΔBMA,ΔBMS均为直角三角形.
∵AN⊥平面SMB.∴ΔANS、ΔANM、ΔANH均为直角三角形.
∵SB⊥平面AHN. ∴ΔSHA、ΔBHA、ΔSHN均为直角三角形
综上所述,图中共有10个直角三角形.
(4)由SA⊥平面AMB知:SA⊥AM,SA⊥AB,SA⊥BM;
由BM⊥平面SAM知:BM⊥AM,BM⊥SM,BM⊥AN;
由AN⊥平面SMB知:AN⊥SM,AN⊥SB,AN⊥NH;
SB⊥平面AHN知:SB⊥AH,SB⊥HN;
综上所述,图中有11对互相垂直的直线.
309. 在空间四边形ABCP中,PA⊥PC,PB⊥BC,AC⊥BC.PA、PB与平面ABC所成角分别为30°和45°。(1)直线PC与AB能否垂直?证明你的结论;(2)若点P到平面ABC的距离为h,求点P到直线AB的距离.
解析:主要考查直线与直线、直线与平面的位置关系的综合应用及线面角,点面间距离等概念应用,空间想象力及推理能力.
解 (1)AB与PC不能垂直,证明如下:假设PC⊥AB,作PH⊥平面ABC于H,则HC是PC在平面ABC的射影,∴HC⊥AB,∵PA、PB在平面ABC的射影分别为HB、HA,PB⊥BC,PA⊥PC.
∴BH⊥BC,AH⊥AC
∵AC⊥BC,∴平行四边形ACBH为矩形.
∵HC⊥AB,∴ACBH为正方形.
∴HB=HA
∵PH⊥平面ACBH.∴ΔPHB≌ΔPHA.
∴∠PBH=∠PAH,且PB,PA与平面ABC所成角分别为∠PBH,∠PAH.由已知∠PBH=45°,∠PAH=30°,与∠PBH=∠PAH矛盾.
∴PC不垂直于AB.
(2)由已知有PH=h,∴∠PBH=45°
∴BH=PH=h.∵∠PAH=30°,∴HA=h.
∴矩形ACBH中,AB===2h.
作HE⊥AB于E,∴HE===h.
∵PH⊥平面ACBH,HE⊥AB,
由三垂线定理有PE⊥AB,∴PE是点P到AB的距离.
在RtΔPHE中,PE===h.
即点P到AB距离为h.
评析:此题属开放型命题,处理此类问题的方法是先假设结论成立,然后“执果索因”,作推理分析,导出矛盾的就否定结论(反证法),导不出矛盾的,就说明与条件相容,可采用演绎法进行推理,此题(1)属于反证法.
308. 空间四边形PABC中,PA、PB、PC两两相互垂直,∠PBA=45°,∠PBC=60°,M为AB的中点.(1)求BC与平面PAB所成的角;(2)求证:AB⊥平面PMC.
解析:此题数据特殊,先考虑数据关系及计算、发现解题思路.
解 ∵ PA⊥AB,∴∠APB=90°
在RtΔAPB中,∵∠ABP=45°,设PA=a,
则PB=a,AB=a,∵PB⊥PC,在RtΔPBC中,
∵∠PBC=60°,PB=a.∴BC=2a,PC=a.
∵AP⊥PC ∴在RtΔAPC中,AC===2a
(1)∵PC⊥PA,PC⊥PB,∴PC⊥平面PAB,
∴BC在平面PBC上的射影是BP.
∠CBP是CB与平面PAB所成的角
∵∠PBC=60°,∴BC与平面PBA的角为60°.
(2)由上知,PA=PB=a,AC=BC=2a.
∴M为AB的中点,则AB⊥PM,AB⊥CM.
∴AB⊥平面PCM.
说明 要清楚线面的垂直关系,线面角的定义,通过数据特点,发现解题捷径.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com